Mario InclÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461300/publications.pdf Version: 2024-02-01

MARIO INCIÃIN

#	Article	IF	CITATIONS
1	Mn(II) Complexes of Enlarged Scorpiand-Type Azamacrocycles as Mimetics of MnSOD Enzyme. Applied Sciences (Switzerland), 2022, 12, 2447.	1.3	0
2	Fluorescent Chemosensors Based on Polyamine Ligands: A Review. Chemosensors, 2022, 10, 1.	1.8	12
3	A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules, 2021, 26, 2352.	1.7	2
4	Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes. Molecules, 2021, 26, 3957.	1.7	1
5	Zn ²⁺ and Cu ²⁺ complexes of a fluorescent scorpiand-type oxadiazole azamacrocyclic ligand: crystal structures, solution studies and optical properties. Dalton Transactions, 2020, 49, 1897-1906.	1.6	7
6	A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd2+ Azamacrocyclic Complex. Molecules, 2019, 24, 2714.	1.7	19
7	Acid–base behaviour and binding to double stranded DNA/RNA of benzo[<i>g</i>]phthalazine-based ligands. New Journal of Chemistry, 2019, 43, 700-708.	1.4	4
8	MWCNTs-Supported Pd(II) Complexes with High Catalytic Efficiency in Oxygen Reduction Reaction in Alkaline Media. Inorganic Chemistry, 2018, 57, 14484-14488.	1.9	23
9	Azaâ€Macrocyclic Triphenylamine Ligands for Gâ€Quadruplex Recognition. Chemistry - A European Journal, 2018, 24, 10850-10858.	1.7	17
10	Efficient two-step synthesis of water soluble BODIPY–TREN chemosensors for copper(<scp>ii</scp>) ions. RSC Advances, 2017, 7, 3066-3071.	1.7	11
11	A hybrid catalyst for decontamination of organic pollutants based on a bifunctional dicopper(II) complex anchored over niobium oxyhydroxide. Applied Catalysis B: Environmental, 2017, 209, 339-345.	10.8	8
12	Homo- and Heterobinuclear Cu ²⁺ and Zn ²⁺ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics. Inorganic Chemistry, 2017, 56, 13748-13758.	1.9	19
13	Binding Mode and Selectivity of a Scorpiandâ€Like Polyamine Ligand to Single―and Doubleâ€Stranded DNA and RNA: Metal―and pHâ€Driven Modulation. Chemistry - A European Journal, 2017, 23, 15966-15973.	1.7	3
14	Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles. Journal of Catalysis, 2017, 353, 239-249.	3.1	27
15	Molecular recognition of <i>N</i> -acetyltryptophan enantiomers by β-cyclodextrin. Beilstein Journal of Organic Chemistry, 2017, 13, 1572-1582.	1.3	9
16	In vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase. RSC Advances, 2016, 6, 17446-17455.	1.7	13
17	Dicopper(II) Metallacyclophanes with <i>N,N</i> ′-2,6-Pyridinebis(oxamate): Solution Study, Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2016, 55, 2390-2401.	1.9	16
18	Molecular Recognition of Nucleotides in Water by Scorpiandâ€Type Receptors Based on Nucleobase Discrimination. Chemistry - A European Journal, 2014, 20, 3730-3741.	1.7	31

Mario InclÃin

#	Article	IF	CITATIONS
19	Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Advances, 2014, 4, 65108-65120.	1.7	19
20	Voltammetry of microparticles, scanning electrochemical microscopy and scanning tunneling microscopy applied to the study of dsDNA binding and damage by scorpiand-like polyamine receptors. Journal of Electroanalytical Chemistry, 2014, 720-721, 24-33.	1.9	3
21	Solution and solid state studies with the bis-oxalato building block [Cr(pyim)(C ₂ O ₄) ₂] ^{â^'} [pyimÂ=Â2-(2′-pyridyl)imidazole]. Journal of Coordination Chemistry, 2013, 66, 3349-3364.	0.8	11
22	Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-like Ligands. Journal of the American Chemical Society, 2012, 134, 9644-9656.	6.6	78
23	Manganese(ii) complexes of scorpiand-like azamacrocycles as MnSOD mimics. Chemical Communications, 2011, 47, 5988.	2.2	35