Gennara Cavallaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS Applied Materials & Interfaces, 2022, 14, 2551-2563.	8.0	15
2	Bioactive Scaffolds Based on Amine-Functionalized Gellan Gum for the Osteogenic Differentiation of Gingival Mesenchymal Stem Cells. ACS Applied Polymer Materials, 2022, 4, 1805-1815.	4.4	1
3	Development of a novel rapamycin loaded nano- into micro-formulation for treatment of lung inflammation. Drug Delivery and Translational Research, 2022, 12, 1859-1872.	5.8	13
4	Printable Thermo- and Photo-stable Poly(D,L-lactide)/Carbon Nanodots Nanocomposites via Heterophase Melt-Extrusion Transesterification. Chemical Engineering Journal, 2022, 443, 136525.	12.7	8
5	Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. Journal of Controlled Release, 2021, 330, 1132-1151.	9.9	27
6	Development of New Targeted Inulin Complex Nanoaggregates for siRNA Delivery in Antitumor Therapy. Molecules, 2021, 26, 1713.	3.8	6
7	Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis. Pharmaceutics, 2021, 13, 503.	4.5	12
8	Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules, 2021, 26, 3085.	3.8	39
9	Novel dual-flow perfusion bioreactor for in vitro pre-screening of nanoparticles delivery: design, characterization and testing. Bioprocess and Biosystems Engineering, 2021, 44, 2361-2374.	3.4	2
10	mPEG-PLGA Nanoparticles Labelled with Loaded or Conjugated Rhodamine-B for Potential Nose-to-Brain Delivery. Pharmaceutics, 2021, 13, 1508.	4.5	14
11	Hyaluronic acid dressing of hydrophobic carbon nanodots: A self-assembling strategy of hybrid nanocomposites with theranostic potential. Carbohydrate Polymers, 2021, 267, 118213.	10.2	21
12	Development of polymer-based nanoparticles for zileuton delivery to the lung: PMeOx and PMeOzi surface chemistry reduces interactions with mucins. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102451.	3.3	9
13	Effect of actively targeted copolymer coating on solid tumors eradication by gold nanorods-induced hyperthermia. International Journal of Pharmaceutics, 2020, 587, 119641.	5.2	20
14	Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines. Cancers, 2020, 12, 3114.	3.7	21
15	Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics. Pharmaceutics, 2020, 12, 1012.	4.5	18
16	Preparation and Characterization of Gold Nanorods Coated with Gellan Gum and Lipoic Acid. Applied Sciences (Switzerland), 2020, 10, 8322.	2.5	7
17	Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 2020, 13, 4899.	2.9	8
18	Design of New Polyaspartamide Copolymers for siRNA Delivery in Antiasthmatic Therapy. Pharmaceutics, 2020, 12, 89.	4.5	11

#	Article	IF	CITATIONS
19	Inhalable nano into micro dry powders for ivacaftor delivery: The role of mannitol and cysteamine as mucus-active agents. International Journal of Pharmaceutics, 2020, 582, 119304.	5.2	6
20	Production of polymeric micro- and nanostructures with tunable properties as pharmaceutical delivery systems. Polymer, 2020, 200, 122596.	3.8	10
21	Combining Inulin Multifunctional Polycation and Magnetic Nanoparticles: Redox-Responsive siRNA-Loaded Systems for Magnetofection. Polymers, 2019, 11, 889.	4.5	7
22	Microfibrillar polymeric ocular inserts for triamcinolone acetonide delivery. International Journal of Pharmaceutics, 2019, 567, 118459.	5.2	19
23	Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS Applied Materials & Interfaces, 2019, 11, 19854-19866.	8.0	61
24	Nanometric ion pair complexes of tobramycin forming microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. International Journal of Pharmaceutics, 2019, 563, 347-357.	5.2	4
25	Branched High Molecular Weight Glycopolypeptide With Broad-Spectrum Antimicrobial Activity for the Treatment of Biofilm Related Infections. ACS Applied Materials & Interfaces, 2018, 10, 318-331.	8.0	43
26	Mucus and Cell-Penetrating Nanoparticles Embedded in <i>Nano</i> - <i>into</i> - <i>Micro</i> Formulations for Pulmonary Delivery of Ivacaftor in Patients with Cystic Fibrosis. ACS Applied Materials & Interfaces, 2018, 10, 165-181.	8.0	59
27	Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. International Journal of Pharmaceutics, 2017, 519, 113-124.	5.2	22
28	Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. International Journal of Pharmaceutics, 2017, 525, 397-406.	5.2	23
29	Polymeric nanoparticles for siRNA delivery: Production and applications. International Journal of Pharmaceutics, 2017, 525, 313-333.	5.2	87
30	Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma. ACS Applied Materials & Interfaces, 2017, 9, 14453-14469.	8.0	70
31	Nano into Micro Formulations of Tobramycin for the Treatment of <i>Pseudomonas aeruginosa</i> Infections in Cystic Fibrosis. Biomacromolecules, 2017, 18, 3924-3935.	5.4	20
32	Polyanion–tobramycin nanocomplexes into functional microparticles for the treatment of <i>Pseudomonas aeruginosa</i> infections in cystic fibrosis. Nanomedicine, 2017, 12, 25-42.	3.3	7
33	Polyaspartamide-Based Nanoparticles Loaded with Fluticasone Propionate and the In Vitro Evaluation towards Cigarette Smoke Effects. Nanomaterials, 2017, 7, 222.	4.1	8
34	Margination of Fluorescent Polylactic Acid–Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure. Molecules, 2017, 22, 1845.	3.8	3
35	Photothermal Ablation of Cancer Cells Using Folate-Coated Gold/ Graphene Oxide Composite. Current Drug Delivery, 2017, 14, 433-443.	1.6	18
36	Preparation and Characterization of Inulin Coated Gold Nanoparticles for Selective Delivery of Doxorubicin to Breast Cancer Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	20

#	Article	IF	CITATIONS
37	Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery. Biomacromolecules, 2016, 17, 2352-2366.	5.4	18
38	Pegylated Polyaspartamide–Polylactide-Based Nanoparticles Penetrating Cystic Fibrosis Artificial Mucus. Biomacromolecules, 2016, 17, 767-777.	5.4	74
39	Polyaspartamide–Polylactide Graft Copolymers with Tunable Properties for the Realization of Fluorescent Nanoparticles for Imaging. Macromolecular Rapid Communications, 2015, 36, 1409-1415.	3.9	20
40	Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polymer Degradation and Stability, 2015, 119, 56-67.	5.8	18
41	Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells. Journal of Inorganic Biochemistry, 2015, 151, 123-131.	3.5	14
42	Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulmonary Pharmacology and Therapeutics, 2015, 34, 8-24.	2.6	43
43	Cationic polyaspartamide-based nanocomplexes mediate siRNA entry and down-regulation of the pro-inflammatory mediator high mobility group box 1 in airway epithelial cells. International Journal of Pharmaceutics, 2015, 491, 359-366.	5.2	12
44	Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy. Biomacromolecules, 2015, 16, 2766-2775.	5.4	49
45	Hepatocyte-targeted fluorescent nanoparticles based on a polyaspartamide for potential theranostic applications. Polymer, 2015, 70, 257-270.	3.8	30
46	Inulin-Ethylenediamine Coated SPIONs Magnetoplexes: A Promising Tool for Improving siRNA Delivery. Pharmaceutical Research, 2015, 32, 3674-3687.	3.5	25
47	PHEA–PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. International Journal of Pharmaceutics, 2015, 495, 719-727.	5.2	35
48	Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs. Current Drug Metabolism, 2015, 16, 427-452.	1.2	26
49	Inulin Derivatives Obtained <i>Via</i> Enhanced Microwave Synthesis for Nucleic Acid Based Drug Delivery. Current Drug Targets, 2015, 16, 1650-1659.	2.1	8
50	Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers. Journal of Nanobiotechnology, 2014, 12, 46.	9.1	18
51	Galactosylated polymeric carriers for liver targeting of sorafenib. International Journal of Pharmaceutics, 2014, 466, 172-180.	5.2	72
52	When Functionalization of PLA Surfaces Meets Thiol–Yne Photochemistry: Case Study with Antibacterial Polyaspartamide Derivatives. Biomacromolecules, 2014, 15, 4351-4362.	5.4	29
53	Polymeric Nanocarriers for Magnetic Targeted Drug Delivery: Preparation, Characterization, and in Vitro and in Vivo Evaluation. Molecular Pharmaceutics, 2013, 10, 4397-4407.	4.6	38
54	Amphiphilic Copolymers Based on Poly[(hydroxyethyl)- <scp>d</scp> , <scp>l</scp> -aspartamide]: A Suitable Functional Coating for Biocompatible Gold Nanostars. Biomacromolecules, 2013, 14, 4260-4270.	5.4	20

#	Article	IF	CITATIONS
55	Galactosylated Micelles for a Ribavirin Prodrug Targeting to Hepatocytes. Biomacromolecules, 2013, 14, 1838-1849.	5.4	42
56	Cell Uptake Enhancement of Folate Targeted Polymer Coated Magnetic Nanoparticles. Journal of Biomedical Nanotechnology, 2013, 9, 949-964.	1.1	42
57	Novel Composed Galactosylated Nanodevices Containing a Ribavirin Prodrug as Hepatic Cell-Targeted Carriers for HCV Treatment. Journal of Biomedical Nanotechnology, 2013, 9, 1107-1122.	1.1	40
58	PHEA-graft-polybutylmethacrylate copolymer microparticles for delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2012, 433, 16-24.	5.2	36
59	New copolymers graft of α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide obtained from atom transfer radical polymerization as vector for gene delivery. Reactive and Functional Polymers, 2012, 72, 268-278.	4.1	6
60	Macromolecular Prodrugs Based on Synthetic Polyaminoacids: Drug Delivery and Drug Targeting in Antitumor Therapy. Current Topics in Medicinal Chemistry, 2011, 11, 2382-2389.	2.1	10
61	Polyaspartamide <i>â€graftâ€</i> Polymethacrylate Nanoparticles for Doxorubicin Delivery. Macromolecular Bioscience, 2011, 11, 445-454.	4.1	17
62	Phospholipid–polyaspartamide micelles for pulmonary delivery of corticosteroids. International Journal of Pharmaceutics, 2011, 406, 135-144.	5.2	40
63	Multicomponent polymeric micelles based on polyaspartamide as tunable fluorescent pH-window biosensors. Biosensors and Bioelectronics, 2010, 26, 29-35.	10.1	11
64	Nanoparticles based on novel amphiphilic polyaspartamide copolymers. Journal of Nanoparticle Research, 2010, 12, 2629-2644.	1.9	18
65	New Self-Assembling Polyaspartamide-Based Brush Copolymers Obtained by Atom Transfer Radical Polymerization. Macromolecules, 2009, 42, 3247-3257.	4.8	20
66	Supramolecular association of recombinant human growth hormone with hydrophobized polyhydroxyethylaspartamides. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 656-666.	4.3	9
67	Synthesis, characterization and in vitro cytotoxicity studies of a macromolecular conjugate of paclitaxel bearing oxytocin as targeting moiety. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 182-192.	4.3	22
68	PEGylated Nanoparticles Based on a Polyaspartamide. Preparation, Physico-Chemical Characterization, and Intracellular Uptake. Biomacromolecules, 2006, 7, 3083-3092.	5.4	70
69	Novel cationic polyaspartamide with covalently linked carboxypropyl-trimethyl ammonium chloride as a candidate vector for gene delivery. European Polymer Journal, 2006, 42, 823-834.	5.4	16
70	Synthesis and characterization of polyaminoacidic polycations for gene delivery. Biomaterials, 2006, 27, 2066-2075.	11.4	48
71	Folate-mediated targeting of polymeric conjugates of gemcitabine. International Journal of Pharmaceutics, 2006, 307, 258-269.	5.2	83
72	Reversibly stable thiopolyplexes for intracellular delivery of genes. Journal of Controlled Release, 2006, 115, 322-334.	9.9	55

#	Article	IF	CITATIONS
73	Glycosilated Macromolecular Conjugates of Antiviral Drugs with a Polyaspartamide. Journal of Drug Targeting, 2004, 12, 593-605.	4.4	20
74	Tamoxifen-Loaded Polymeric Micelles: Preparation, Physico-Chemical Characterization and In Vitro Evaluation Studies. Macromolecular Bioscience, 2004, 4, 1028-1038.	4.1	48
75	Preparation of Polymeric Nanoparticles by Photo-Crosslinking of an Acryloylated Polyaspartamide in w/o Microemulsion. Macromolecular Chemistry and Physics, 2004, 205, 1955-1964.	2.2	21
76	Poly(hydroxyethylaspartamide) derivatives as colloidal drug carrier systems. Journal of Controlled Release, 2003, 89, 285-295.	9.9	47
77	Evaluation of mucoadhesive properties of α,β-poly(N-hydroxyethyl)-dl-aspartamide and α,β-poly(aspartylhydrazide) using ATR–FTIR spectroscopy. Polymer, 2002, 43, 6281-6286.	3.8	28
78	Synthesis and biopharmaceutical characterisation of new poly(hydroxyethylaspartamide) copolymers as drug carriers. Biochimica Et Biophysica Acta - General Subjects, 2001, 1528, 177-186.	2.4	27
79	α,β-poly(asparthylhydrazide)–glycidyltrimethylammonium chloride copolymers (PAHy–GTA): novel polymers with potential for DNA delivery. Journal of Controlled Release, 2001, 77, 139-153.	9.9	31
80	Conformational analysis of α,β-poly(N-hydroxyethyl)-dl-aspartamide (PHEA) and α,β-polyasparthydrazide (PAHy) polymers in aqueous solution. Polymer, 1998, 39, 4159-4164.	3.8	13
81	A new water-soluble synthetic polymer, α,β-polyasparthydrazide, as potential plasma expander and drug carrier. Journal of Controlled Release, 1994, 29, 63-72.	9.9	47