
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461176/publications.pdf Version: 2024-02-01

WING-FULLAL

#	Article	IF	CITATIONS
1	Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Critical Reviews in Food Science and Nutrition, 2022, 62, 5140-5166.	5.4	5
2	Design and optimization of quercetin-based functional foods. Critical Reviews in Food Science and Nutrition, 2022, 62, 7319-7335.	5.4	22
3	Non-aromatic clusteroluminogenic polymers: structural design and applications in bioactive agent delivery. Materials Today Chemistry, 2022, 23, 100712.	1.7	12
4	ROS-Generating Amine-Functionalized Magnetic Nanoparticles Coupled with Carboxymethyl Chitosan for pH-Responsive Release of Doxorubicin. International Journal of Nanomedicine, 2022, Volume 17, 589-601.	3.3	54
5	Omicron: Understanding the latest variant of SARSâ€CoVâ€2 and strategies for tackling the infection. ChemBioChem, 2022, , .	1.3	4
6	Design of Polymeric Films for Antioxidant Active Food Packaging. International Journal of Molecular Sciences, 2022, 23, 12.	1.8	31
7	Edible Clusteroluminogenic Films Obtained from Starch of Different Botanical Origins for Food Packaging and Quality Management of Frozen Foods. Membranes, 2022, 12, 437.	1.4	15
8	Advances in the Analysis of Pharmaceuticals by Using Grapheneâ€Based Sensors. ChemMedChem, 2022, 17,	1.6	1
9	Design and Practical Considerations for Active Polymeric Films in Food Packaging. International Journal of Molecular Sciences, 2022, 23, 6295.	1.8	7
10	Use of graphene-based materials as carriers of bioactive agents. Asian Journal of Pharmaceutical Sciences, 2021, 16, 577-588.	4.3	62
11	Alginateâ€based complex fibers with the Janus morphology for controlled release of coâ€delivered drugs. Asian Journal of Pharmaceutical Sciences, 2021, 16, 77-85.	4.3	76
12	Tackling COVIDâ€19 Using Remdesivir and Favipiravir as Therapeutic Options. ChemBioChem, 2021, 22, 939-948.	1.3	50
13	A Bioinspired, Sustainedâ€Release Material in Response to Internal Signals for Biphasic Chemical Sensing in Wound Therapy. Advanced Healthcare Materials, 2021, 10, e2001267.	3.9	9
14	Bioinspired Materials: A Bioinspired, Sustainedâ€Release Material in Response to Internal Signals for Biphasic Chemical Sensing in Wound Therapy (Adv. Healthcare Mater. 2/2021). Advanced Healthcare Materials, 2021, 10, 2170006.	3.9	1
15	Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Delivery, 2021, 28, 1562-1568.	2.5	53
16	Nanoparticulate Systems for Bioactive Agent Delivery: What Is the Missing Link in Research for Real Applications?. Advanced NanoBiomed Research, 2021, 1, 2000099.	1.7	1
17	Students' Perception and Expectation towards Pharmacy Education: A Qualitative Study of Pharmacy Students in a Developing Country. Indian Journal of Pharmaceutical Education and Research, 2021, 55, 63-69.	0.3	47
18	Development and Characterization of Montmorilloniteâ€Based Hybrid Materials for pHâ€Responsive Drug Delivery. ChemistrySelect, 2021, 6, 1466-1470.	0.7	7

#	Article	IF	CITATIONS
19	Multi-Component Hydrogel Beads Incorporated with Reduced Graphene Oxide for pH-Responsive and Controlled Co-Delivery of Multiple Agents. Pharmaceutics, 2021, 13, 313.	2.0	70
20	Development of a composite film fabricated from carboxymethyl chitosan and magnetite nanoparticles for pH-responsive bioactive agent release. Biointerphases, 2021, 16, 021006.	0.6	5
21	Development of Hydrogels with Self-Healing Properties for Delivery of Bioactive Agents. Molecular Pharmaceutics, 2021, 18, 1833-1841.	2.3	58
22	Property-Tuneable Microgels Fabricated by Using Flow-Focusing Microfluidic Geometry for Bioactive Agent Delivery. Pharmaceutics, 2021, 13, 787.	2.0	62
23	UVâ€Shielding and Clusteroluminogenic Celluloseâ€Based Films with Tuneable Wettability and Permeability for Dually Selfâ€Indicating Food Packaging. Advanced Materials Technologies, 2021, 6, 2100120.	3.0	11
24	A self-indicating cellulose-based gel with tunable performance for bioactive agent delivery. Journal of Drug Delivery Science and Technology, 2021, 63, 102428.	1.4	44
25	Delivery of Mesenchymal Stem Cells for Tackling Systemic Disorders. Current Stem Cell Research and Therapy, 2021, 16, 640-646.	0.6	0
26	Antibacterial and clusteroluminogenic hypromellose-graft-chitosan-based polyelectrolyte complex films with high functional flexibility for food packaging. Carbohydrate Polymers, 2021, 271, 118447.	5.1	23
27	Preparation and use of nanogels as carriers of drugs. Drug Delivery, 2021, 28, 1594-1602.	2.5	44
28	News coverage of drug development: implications for the conveyance of health information. BMC Public Health, 2021, 21, 1799.	1.2	2
29	Biogerontology. , 2021, , 671-676.		0
30	Preparation, Characterization and Dielectric Properties of Alginate-Based Composite Films Containing Lithium Silver Oxide Nanoparticles. Frontiers in Chemistry, 2021, 9, 777079.	1.8	1
31	Biochemistry and use of soybean isoflavones in functional food development. Critical Reviews in Food Science and Nutrition, 2020, 60, 2098-2112.	5.4	55
32	Self-healing properties of hydrogels based on natural polymers. , 2020, , 223-245.		7
33	A copper nanocluster incorporated nanogel: Confinementâ€assisted emission enhancement for zinc ion detection in living cells. Sensors and Actuators B: Chemical, 2020, 307, 127626.	4.0	33
34	A MXene of type Ti3C2Tx functionalized with copper nanoclusters for the fluorometric determination of glutathione. Mikrochimica Acta, 2020, 187, 38.	2.5	32
35	Cancer neoantigen: Boosting immunotherapy. Biomedicine and Pharmacotherapy, 2020, 131, 110640.	2.5	37
36	Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells. Journal of Molecular Liquids, 2020, 316, 113785.	2.3	6

#	Article	IF	CITATIONS
37	DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. Nano Structures Nano Objects, 2020, 23, 100523.	1.9	13
38	Non-conjugated polymers with intrinsic luminescence for drug delivery. Journal of Drug Delivery Science and Technology, 2020, 59, 101916.	1.4	86
39	The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Delivery and Translational Research, 2020, 10, 1381-1392.	3.0	8
40	A gel-forming clusteroluminogenic polymer with tunable emission behavior as a sustained-release carrier enabling real-time tracking during bioactive agent delivery. Applied Materials Today, 2020, 21, 100876.	2.3	15
41	Systemic Delivery in Anti-aging Medicine: An Overview. Healthy Ageing and Longevity, 2020, , 3-37.	0.2	0
42	Molecular Design of Layer-by-Layer Functionalized Liposomes for Oral Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 43341-43351.	4.0	34
43	Ionically Crosslinked Complex Gels Loaded with Oleic Acid-Containing Vesicles for Transdermal Drug Delivery. Pharmaceutics, 2020, 12, 725.	2.0	86
44	How to overcome the side effects of tumor immunotherapy. Biomedicine and Pharmacotherapy, 2020, 130, 110639.	2.5	39
45	Synthesis of Ligand Functionalized ErbB-3 Targeted Novel DNA Nano-Threads Loaded with the Low Dose of Doxorubicin for Efficient In Vitro Evaluation of the Resistant Anti-Cancer Activity. Pharmaceutical Research, 2020, 37, 75.	1.7	13
46	Progress and trends in the development of therapies for Hutchinson–Gilford progeria syndrome. Aging Cell, 2020, 19, e13175.	3.0	22
47	Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Research Reviews, 2020, 58, 101021.	5.0	37
48	Synthetic NRG-1 functionalized DNA nanospindels towards HER2/neu targets for in vitro anti-cancer activity assessment against breast cancer MCF-7 cells. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182, 113133.	1.4	14
49	Development of Copper Nanoclusters for In Vitro and In Vivo Theranostic Applications. Advanced Materials, 2020, 32, e1906872.	11.1	88
50	Epigallocatechin-3-gallate in functional food development: From concept to reality. Trends in Food Science and Technology, 2020, 102, 271-279.	7.8	10
51	Multilayered composite-coated ionically crosslinked food-grade hydrogel beads generated from algal alginate for controlled and sustained release of bioactive compounds. RSC Advances, 2020, 10, 44522-44532.	1.7	14
52	Layer-by-Layer Functionalization for Oral Liposomal Formulations in Anti-aging Medicine. Healthy Ageing and Longevity, 2020, , 393-409.	0.2	0
53	Blood Interactions with Nanoparticles During Systemic Delivery. Healthy Ageing and Longevity, 2020, , 477-493.	0.2	0

54 Use of delivery technologies to mediate herbal interventions. , 2019, , 141-150.

0

#	Article	IF	CITATIONS
55	Theoretical frameworks for intervention development. , 2019, , 3-11.		0
56	Available delivery technologies for intervention execution. , 2019, , 13-22.		0
57	Design of viral vectors for genetic manipulation. , 2019, , 25-36.		0
58	Design of upconversion nanoparticles for intervention execution. , 2019, , 61-72.		0
59	Technical barriers to systemic interventions. , 2019, , 161-168.		0
60	Social barriers to intervention success. , 2019, , 175-180.		0
61	Design of hydrogel-based nanoparticles for intervention execution. , 2019, , 73-84.		0
62	Design of polymeric vectors for genetic manipulation. , 2019, , 37-48.		0
63	Design of cyclodextrin-based systems for intervention execution. , 2019, , 49-59.		1
64	Use of delivery technologies to mediate RNA degradation. , 2019, , 87-97.		0
65	Use of delivery technologies to manipulate mitochondrial metabolism. , 2019, , 119-129.		0
66	Use of delivery technologies to modulate protein kinase activity. , 2019, , 109-117.		0
67	Use of delivery technologies to mediate tissue regeneration and repair. , 2019, , 131-139.		0
68	Biological barriers to cellular interventions. , 2019, , 153-160.		0
69	Ethical barriers to intervention development. , 2019, , 169-174.		Ο
70	Identification of Molecular Fluorophore as a Component of Carbon Dots able to Induce Gelation in a Fluorescent Multivalent-Metal-Ion-Free Alginate Hydrogel. Scientific Reports, 2019, 9, 15080.	1.6	7
71	Tackling Aging by Using miRNA as a Target and a Tool. Trends in Molecular Medicine, 2019, 25, 673-684.	3.5	21
72	A biocompatible and easy-to-make polyelectrolyte dressing with tunable drug delivery properties for wound care. International Journal of Pharmaceutics, 2019, 566, 101-110.	2.6	28

#	Article	IF	CITATIONS
73	A FRET biosensor based on MnO2 nanosphere/copper nanocluster complex: From photoluminescence quenching to recovery and magnification. Sensors and Actuators B: Chemical, 2019, 290, 535-543.	4.0	37
74	Copperâ€Nanoclusterâ€Based Transparent Ultravioletâ€Shielding Polymer Films. ChemNanoMat, 2019, 5, 110-115.	1.5	18
75	Biogerontology. , 2019, , 1-7.		0
76	Use of delivery technologies to manipulate miRNA expression. , 2019, , 99-108.		0
77	Design of Polymeric Gene Carriers for Effective Intracellular Delivery. Trends in Biotechnology, 2018, 36, 713-728.	4.9	103
78	A Phytochemical-Based Copolymer Derived from Coriolus versicolor Polysaccharopeptides for Gene Delivery. Molecules, 2018, 23, 2273.	1.7	4
79	Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials, 2018, 28, 1802848.	7.8	48
80	One-pot synthesis of an emulsion-templated hydrogel-microsphere composite with tunable properties. Composites Part A: Applied Science and Manufacturing, 2018, 113, 318-329.	3.8	14
81	Hydroxypropyl-β-cyclodextrin for Delivery of Baicalin via Inclusion Complexation by Supercritical Fluid Encapsulation. Molecules, 2018, 23, 1169.	1.7	19
82	Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS Applied Materials & Interfaces, 2017, 9, 11309-11320.	4.0	75
83	Molecular design of upconversion nanoparticles for gene delivery. Chemical Science, 2017, 8, 7339-7358.	3.7	39
84	Electrospray-mediated preparation of compositionally homogeneous core–shell hydrogel microspheres for sustained drug release. RSC Advances, 2017, 7, 44482-44491.	1.7	26
85	Chemistry and engineering of cyclodextrins for molecular imaging. Chemical Society Reviews, 2017, 46, 6379-6419.	18.7	103
86	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	3.2	58
87	Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. Journal of Controlled Release, 2016, 243, 269-282.	4.8	75
88	Multicompartment Microgel Beads for Co-Delivery of Multiple Drugs at Individual Release Rates. ACS Applied Materials & Interfaces, 2016, 8, 871-880.	4.0	66
89	A stimuli-responsive nanoparticulate system using poly(ethylenimine)-graft-polysorbate for controlled protein release. Nanoscale, 2016, 8, 517-528.	2.8	52
90	Advanced functional polymers for regenerative and therapeutic dentistry. Oral Diseases, 2015, 21, 550-557.	1.5	5

#	Article	IF	CITATIONS
91	Chemotherapeutic Drugs Interfere with Gene Delivery Mediated by Chitosan-Graft-Poly(ethylenimine). PLoS ONE, 2015, 10, e0126367.	1.1	16
92	Hypromellose- <i>graft</i> -chitosan and Its Polyelectrolyte Complex as Novel Systems for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 10501-10510.	4.0	79
93	Treating cutaneous aging with patented technologies. Journal of Biosciences, 2015, 40, 209-216.	0.5	1
94	Folate-conjugated Chitosan-poly(ethylenimine) Copolymer As An Efficient and Safe Vector For Gene Delivery in Cancer Cells. Current Gene Therapy, 2015, 15, 472-480.	0.9	23
95	Study on Modification of Polymer Properties by the Cold Drawing Process. Soft, 2015, 04, 1-7.	0.7	3
96	Requirement of Runx3 in pulmonary vasculogenesis. Cell and Tissue Research, 2014, 356, 445-449.	1.5	16
97	Molecular and engineering approaches to regenerate and repair teeth in mammals. Cellular and Molecular Life Sciences, 2014, 71, 1691-1701.	2.4	15
98	MicroRNAs as regulators of cutaneous wound healing. Journal of Biosciences, 2014, 39, 519-524.	0.5	19
99	Cyclodextrins in non-viral gene delivery. Biomaterials, 2014, 35, 401-411.	5.7	118
100	Evolving Marine Biomimetics for Regenerative Dentistry. Marine Drugs, 2014, 12, 2877-2912.	2.2	32
101	Cell Transfection with a β-Cyclodextrin-PEI-Propane-1,2,3-Triol Nanopolymer. PLoS ONE, 2014, 9, e100258.	1.1	12
102	Linear Poly(ethylenimine) Cross-Linked by Methyl-β-Cyclodextrin for Gene Delivery. Current Gene Therapy, 2014, 14, 258-268.	0.9	16
103	Microfluidic Methods for Non-Viral Gene Delivery. Current Gene Therapy, 2014, 15, 55-63.	0.9	14
104	Nucleic acid delivery: Roles in biogerontological interventions. Ageing Research Reviews, 2013, 12, 310-315.	5.0	26
105	Inference of Gene-Phenotype Associations via Protein-Protein Interaction and Orthology. PLoS ONE, 2013, 8, e77478.	1.1	9
106	Protein kinases as targets for interventive biogerontology: Overview and perspectives. Experimental Gerontology, 2012, 47, 290-294.	1.2	7
107	Beyond Sole Longevity: A Social Perspective on Healthspan Extension. Rejuvenation Research, 2011, 14, 83-88.	0.9	15
108	Delivery of Therapeutics: Current Status and Its Relevance to Regenerative Innovations. Recent Patents on Nanomedicine, 2011, 1, 7-18.	0.5	7

#	Article	IF	CITATIONS
109	Nucleic acid therapy for lifespan prolongation: Present and future. Journal of Biosciences, 2011, 36, 725-729.	0.5	23
110	Cyclodextrin-PEI-Tat Polymer as a Vector for Plasmid DNA Delivery to Placenta Mesenchymal Stem Cells. BioNanoScience, 2011, 1, 89-96.	1.5	27
111	Slimming Company Websites in Hong Kong: Implications for Women's Health. Health Care for Women International, 2011, 32, 632-647.	0.6	1
112	<i>In vivo</i> nucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Review of Medical Devices, 2011, 8, 173-185.	1.4	74
113	Chemical Derivatization of Chitosan for Plasmid DNA Delivery. , 2010, , 69-79.		3
114	Chitosan-PEI graft copolymers for pDNA delivery: fabrication and in vitro properties. , 2010, , .		1
115	Nucleic acid delivery with chitosan and its derivatives. Journal of Controlled Release, 2009, 134, 158-168.	4.8	222
116	Revisiting the melamine contamination event in China: implications for ethics in food technology. Trends in Food Science and Technology, 2009, 20, 366-373.	7.8	35
117	Letter to the Editor. Nursing Outlook, 2009, 57, 183.	1.5	0