Sébastien Bau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7460969/publications.pdf

Version: 2024-02-01

40 papers 534 citations

686830 13 h-index 713013 21 g-index

41 all docs

41 docs citations

times ranked

41

664 citing authors

#	Article	IF	CITATIONS
1	A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols. Powder Technology, 2010, 200, 190-201.	2.1	52
2	Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM). Journal of Nanoparticle Research, 2014, 16, 1.	0.8	37
3	Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Science of the Total Environment, 2017, 605-606, 929-945.	3.9	34
4	A semi-automatic analysis tool for the determination of primary particle size, overlap coefficient and specific surface area of nanoparticles aggregates. Journal of Aerosol Science, 2018, 126, 122-132.	1.8	29
5	A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15–400 nm range. Environmental Sciences: Processes and Impacts, 2015, 17, 261-269.	1.7	28
6	Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator. Journal of Nanoparticle Research, 2010, 12, 1989-1995.	0.8	26
7	Retained particle surface area dose drives inflammation in rat lungs following acute, subacute, and subchronic inhalation of nanomaterials. Particle and Fibre Toxicology, 2021, 18, 29.	2.8	25
8	Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. Journal of Occupational and Environmental Hygiene, 2020, 17, 59-72.	0.4	20
9	Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
10	On the Importance of Density in ELPI Data Post-Treatment. Aerosol Science and Technology, 2015, 49, 1263-1270.	1.5	16
11	CAIMAN: a versatile facility to produce aerosols of nanoparticles. Journal of Physics: Conference Series, 2011, 304, 012014.	0.3	14
12	What does ergonomics have to do with nanotechnologies? A case study. Applied Ergonomics, 2020, 87, 103116.	1.7	14
13	Design and Characterization of an Inhalation System to Expose Rodents to Nanoaerosols. Aerosol and Air Quality Research, 2016, 16, 2989-3000.	0.9	14
14	Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?. Aerosol and Air Quality Research, 2016, 16, 1105-1117.	0.9	13
15	Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Advances, 2019, 1, 3232-3242.	2.2	12
16	Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environmental Science: Nano, 2019, 6, 152-162.	2.2	12
17	A modular tool for analyzing cascade impactors data to improve exposure assessment to airborne nanomaterials. Journal of Physics: Conference Series, 2013, 429, 012002.	0.3	10
18	Performances of the BC-112 NIOSH cyclone for the measurement of endotoxins in bioaerosols: A study in laboratory conditions. Journal of Aerosol Science, 2018, 116, 92-105.	1.8	10

#	Article	IF	CITATIONS
19	Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles. Journal of Physics: Conference Series, 2009, 170, 012006.	0.3	9
20	Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	9
21	Physical performances and kinetics of evaporation of the CIP 10-M personal sampler's rotating cup containing aqueous or viscous collection fluid. Aerosol Science and Technology, 2016, 50, 507-520.	1.5	9
22	Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land. Atmospheric Environment, 2016, 125, 212-221.	1.9	9
23	Seasonal Evolution of Size-Segregated Particulate Mercury in the Atmospheric Aerosol Over Terra Nova Bay, Antarctica. Molecules, 2020, 25, 3971.	1.7	9
24	Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. Journal of Physics: Conference Series, 2011, 304, 012015.	0.3	7
25	Evaluation of the diffusion size classifier (meDiSC) for the real-time measurement of particle size and number concentration of nanoaerosols in the range 20–700 nm. Journal of Environmental Monitoring, 2012, 14, 1014.	2.1	6
26	Performance study of various Condensation Particle Counters (CPCs): development of a methodology based on steady-state airborne DEHS particles and application to a series of handheld and stationary CPCs. Journal of Physics: Conference Series, 2017, 838, 012002.	0.3	6
27	Performance study of portable devices for the real-time measurement of airborne particle number concentration and size (distribution). Journal of Physics: Conference Series, 2017, 838, 012001.	0.3	6
28	Determining the count median diameter of nanoaerosols by simultaneously measuring their number and lung-deposited surface area concentrations. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	5
29	Measurement of electrical charges carried by airborne bacteria laboratory-generated using a single-pass bubbling aerosolizer. Particuology, 2015, 18, 179-185.	2.0	5
30	Effect of constituent particle polydispersion on VSSA-based equivalent particle diameter: Theoretical rationale and application to a set of eight powders with constituent particle median diameters ranging from 9 to 130Ânm. Advanced Powder Technology, 2021, 32, 1369-1379.	2.0	5
31	Dustiness of 14 carbon nanotubes using the vortex shaker method. Journal of Physics: Conference Series, 2017, 838, 012005.	0.3	4
32	Characterization of aerosols generated from nine nanomaterial powders: reliability with regard to in vivo inhalation toxicology studies. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
33	Quantification of Low Pressure Impactor Wall Deposits during Zinc Nanoparticle Sampling. Aerosol and Air Quality Research, 2014, 14, 1812-1821.	0.9	4
34	Safer and stronger together? Effects of the agglomeration on nanopowders explosion. Journal of Loss Prevention in the Process Industries, 2021, 69, 104348.	1.7	3
35	Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers. Annals of Work Exposures and Health, 2017, 61, 784-796.	0.6	2
36	Combining NSAM and CPC concentrations to determine airborne nanoparticle count median diameter: Application to various laboratory and workplace aerosols. Journal of Occupational and Environmental Hygiene, 2018, 15, 492-501.	0.4	2

SéBASTIEN BAU

#	Article	IF	CITATIONS
37	Intercomparison in the laboratory of various Condensation Particle Counters challenged by nanoaerosols in the range 6 – 460 nm. Journal of Physics: Conference Series, 2019, 1323, 012004.	0.3	2
38	Using particle effective density to determine SMPS-based aerosol mass concentration: application to airborne carbon and titanium nanoparticles. Journal of Physics: Conference Series, 2021, 1953, 012004.	0.3	1
39	Combining the Particle Size Selector and a condensation particle counter to determine the number size distribution of airborne nanoparticles. Journal of Aerosol Science, 2019, 128, 22-33.	1.8	0
40	Laboratory study of the performances of two individual Condensation Particle Counters. Journal of Physics: Conference Series, 2021, 1953, 012003.	0.3	0