
Monika Bohm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7460910/publications.pdf Version: 2024-02-01

MONIKA ROHM

#	Article	IF	CITATIONS
1	Prevalence of sustainable and unsustainable use of wild species inferred from the IUCN Red List of Threatened Species. Conservation Biology, 2022, 36, .	4.7	25
2	Assessing the extinction risk of insular, understudied marine species. Conservation Biology, 2022, 36, .	4.7	15
3	Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.	8.7	58
4	Monitoring extinction risk and threats of the world's fishes based on the Sampled Red List Index. Reviews in Fish Biology and Fisheries, 2022, 32, 975-991.	4.9	17
5	A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 2022, 605, 285-290.	27.8	130
6	Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny. PLoS Biology, 2022, 20, e3001544.	5.6	32
7	A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 2021, 35, 502-509.	4.7	103
8	The conservation status of the world's freshwater molluscs. Hydrobiologia, 2021, 848, 3231-3254.	2.0	68
9	Urban green spaces in Dhaka, Bangladesh, harbour nearly half the country's butterfly diversity. Journal of Urban Ecology, 2021, 7, .	1.5	9
10	Identifying the possibilities and pitfalls of conducting IUCN Red List assessments from remotely sensed habitat information based on insights from poorly known Cuban mammals. Conservation Biology, 2021, 35, 1598-1614.	4.7	7
11	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	7.8	61
12	Conservation status of the world's skinks (Scincidae): Taxonomic and geographic patterns in extinction risk. Biological Conservation, 2021, 257, 109101.	4.1	26
13	Correlates of extinction risk in Australian squamate reptiles. Journal of Biogeography, 2021, 48, 2144-2152.	3.0	9
14	New Global Center for Species Survival launches programme of work. Oryx, 2021, 55, 816-817.	1.0	2
15	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
16	Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts. Nature Communications, 2020, 11, 2616.	12.8	59
17	Conservationists deserve protection. Science, 2020, 367, 861-861.	12.6	3
18	Accelerating the monitoring of global biodiversity: Revisiting the sampled approach to generating Red List Indices. Conservation Letters, 2020, 13, e12703.	5.7	19

Μονικά Βοημ

#	Article	IF	CITATIONS
19	Assessment gaps and biases in knowledge of conservation status of fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 225-236.	2.0	26
20	Geographic and taxonomic patterns of extinction risk in Australian squamates. Biological Conservation, 2019, 238, 108203.	4.1	49
21	Red Listing can protect deep-sea biodiversity. Nature Ecology and Evolution, 2019, 3, 1134-1134.	7.8	36
22	Ecological and Conservation Correlates of Rarity in New World Pitvipers. Diversity, 2019, 11, 147.	1.7	12
23	Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecology and Biogeography, 2019, 28, 471-483.	5.8	44
24	The disparity between species description and conservation assessment: A case study in taxa with high rates of species discovery. Biological Conservation, 2018, 220, 209-214.	4.1	51
25	Patterns and biases of climate change threats in the IUCN Red List. Conservation Biology, 2018, 32, 135-147.	4.7	49
26	Assessing the vulnerability of freshwater crayfish to climate change. Diversity and Distributions, 2018, 24, 1830-1843.	4.1	27
27	Tracking Global Population Trends: Population Time-Series Data and a Living Planet Index for Reptiles. Journal of Herpetology, 2018, 52, 259.	0.5	42
28	Butterfly diversity in a tropical urban habitat (Lepidoptera: Papilionoidea). Oriental Insects, 2017, 51, 417-430.	0.3	18
29	Building capacity in biodiversity monitoring at the global scale. Biodiversity and Conservation, 2017, 26, 2765-2790.	2.6	83
30	The global decline of cheetah <i>Acinonyx jubatus</i> and what it means for conservation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 528-533.	7.1	162
31	Monitoring Essential Biodiversity Variables at the Species Level. , 2017, , 79-105.		18
32	The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology and Evolution, 2017, 1, 1677-1682.	7.8	378
33	Rapoport's rule and determinants of species range size in snakes. Diversity and Distributions, 2017, 23, 1472-1481.	4.1	25
34	Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biological Conservation, 2017, 213, 256-263.	4.1	183
35	Case Studies of Capacity Building for Biodiversity Monitoring. , 2017, , 309-326.		5
36	Assessing the Cost of Global Biodiversity and Conservation Knowledge. PLoS ONE, 2016, 11, e0160640.	2.5	65

Μονικά Βοημ

#	Article	IF	CITATIONS
37	Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conservation Biology, 2016, 30, 362-370.	4.7	67
38	Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biology Letters, 2016, 12, 20150843.	2.3	137
39	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	4.3	243
40	Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Global Ecology and Biogeography, 2016, 25, 391-405.	5.8	121
41	Overcoming data deficiency in reptiles. Biological Conservation, 2016, 204, 16-22.	4.1	62
42	Hot and bothered: Using trait-based approaches to assess climate change vulnerability in reptiles. Biological Conservation, 2016, 204, 32-41.	4.1	85
43	Landscape ecology, biogeography, and GIS methods. , 2016, , 298-314.		1
44	Toward equality of biodiversity knowledge through technology transfer. Conservation Biology, 2015, 29, 1290-1302.	4.7	8
45	Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140060.	4.0	225
46	Towards a global terrestrial species monitoring program. Journal for Nature Conservation, 2015, 25, 51-57.	1.8	86
47	Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography, 2015, 24, 396-405.	5.8	78
48	Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography, 2014, 23, 40-51.	5.8	486
49	The conservation status of the world's reptiles. Biological Conservation, 2013, 157, 372-385.	4.1	642
50	The Arctic Species Trend Index: using vertebrate population trends to monitor the health of a rapidly changing ecosystem. Biodiversity, 2012, 13, 144-156.	1.1	14
51	The growing availability of invertebrate extinction risk assessments – A response to Cardoso et al. (October 2011): Adapting the IUCN Red List criteria for invertebrates. Biological Conservation, 2012, 149, 145-146.	4.1	9
52	The Impact of Conservation on the Status of the World's Vertebrates. Science, 2010, 330, 1503-1509.	12.6	1,209
53	Contact Networks in a Wildlife-Livestock Host Community: Identifying High-Risk Individuals in the Transmission of Bovine TB among Badgers and Cattle. PLoS ONE, 2009, 4, e5016.	2.5	172
54	The spatial distribution of badgers, setts and latrines: the risk for intraâ€specific and badgerâ€livestock disease transmission. Ecography, 2008, 31, 525-537.	4.5	11

#	Article	IF	CITATIONS
55	Dynamic interactions among badgers: implications for sociality and disease transmission. Journal of Animal Ecology, 2008, 77, 735-745.	2.8	50
56	Control of bovine tuberculosis in British livestock: there is no â€~silver bullet'. Trends in Microbiology, 2008, 16, 420-427.	7.7	38
57	Wild deer as a source of infection for livestock and humans in the UK. Veterinary Journal, 2007, 174, 260-276.	1.7	70