Jerzy Choma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459816/publications.pdf Version: 2024-02-01

LEDZY CHOMA

#	Article	IF	CITATIONS
1	Silica–metal core–shell nanostructures. Advances in Colloid and Interface Science, 2012, 170, 28-47.	7.0	204
2	KOH activation of mesoporous carbons obtained by soft-templating. Carbon, 2008, 46, 1159-1161.	5.4	168
3	Mechanochemical synthesis of highly porous materials. Materials Horizons, 2020, 7, 1457-1473.	6.4	165
4	Gas adsorption properties of hybrid graphene-MOF materials. Journal of Colloid and Interface Science, 2018, 514, 801-813.	5.0	143
5	New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry, 2012, 22, 12636.	6.7	120
6	Gas adsorption properties of graphene-based materials. Advances in Colloid and Interface Science, 2017, 243, 46-59.	7.0	106
7	Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons. Carbon, 1998, 36, 1447-1458.	5.4	96
8	Advances in Microwave Synthesis of Nanoporous Materials. Advanced Materials, 2021, 33, e2103477.	11.1	84
9	Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. Applied Surface Science, 2002, 196, 216-223.	3.1	77
10	Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56, 7836-7848.	2.2	74
11	Comparison of adsorption methods for characterizing the microporosity of activated carbons. Carbon, 1989, 27, 77-83.	5.4	73
12	Adsorption Properties of Activated Carbons Prepared from Waste CDs and DVDs. ACS Sustainable Chemistry and Engineering, 2015, 3, 733-742.	3.2	73
13	Recent advances in the development and applications of biomass-derived carbons with uniform porosity. Journal of Materials Chemistry A, 2020, 8, 18464-18491.	5.2	68
14	Monitoring Changes in Surface and Structural Properties of Porous Carbons Modified by Different Oxidizing Agents. Journal of Colloid and Interface Science, 1999, 214, 438-446.	5.0	66
15	Characterization of heterogeneity of activated carbons by utilizing the benzene adsorption data. Materials Chemistry and Physics, 1986, 15, 521-536.	2.0	64
16	Energetic and Structural Heterogeneity of Synthetic Microporous Carbons. Langmuir, 1997, 13, 1026-1030.	1.6	58
17	Critical discussion of simple adsorption methods used to evaluate the micropore size distribution. Adsorption, 1997, 3, 209-219.	1.4	57
18	Relation between adsorption potential distribution and pore volume distribution for microporous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 118, 203-210.	2.3	53

JERZY CHOMA

#	Article	IF	CITATIONS
19	Colloidal Silica Templating Synthesis of Carbonaceous Monoliths Assuring Formation of Uniform Spherical Mesopores and Incorporation of Inorganic Nanoparticles. Chemistry of Materials, 2008, 20, 1069-1075.	3.2	52
20	Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous graphene. Microporous and Mesoporous Materials, 2019, 279, 387-394.	2.2	52
21	Correlation between microporosity and fractal dimension of active carbons. Carbon, 1993, 31, 325-331.	5.4	50
22	Preparation and properties of silica–gold core–shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 373, 167-171.	2.3	50
23	Evaluation of energetic heterogeneity and microporosity of activated carbon fibers on the basis of gas adsorption isotherms. Langmuir, 1991, 7, 2719-2722.	1.6	43
24	Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption. Journal of CO2 Utilization, 2016, 16, 17-22.	3.3	43
25	Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon, 2009, 47, 3034-3040.	5.4	42
26	Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2. Microporous and Mesoporous Materials, 2018, 261, 105-110.	2.2	41
27	Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation. Applied Surface Science, 2010, 256, 5187-5190.	3.1	38
28	Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. Microporous and Mesoporous Materials, 2008, 112, 573-579.	2.2	36
29	Improved Pore-Size Analysis of Carbonaceous Adsorbents. Adsorption Science and Technology, 2002, 20, 307-315.	1.5	34
30	Studies of the structural heterogeneity of microporous carbons using liquid/solid adsorption isotherms. Langmuir, 1993, 9, 2555-2561.	1.6	30
31	Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Applied Surface Science, 2014, 289, 592-600.	3.1	28
32	Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2, H2 and C6H6. Journal of Porous Materials, 2018, 25, 621-627.	1.3	28
33	Distribution functions characterizing structural heterogeneity of activated carbons. Carbon, 1988, 26, 1-6.	5.4	27
34	Benzene and Methane Adsorption on Ultrahigh Surface Area Carbons Prepared from Sulphonated Styrene Divinylbenzene Resin by KOH Activation. Adsorption Science and Technology, 2015, 33, 587-594.	1.5	27
35	Characterization of energetic and structural heterogeneities of activated carbons. Langmuir, 1988, 4, 911-917.	1.6	26
36	Carbon–gold core–shell structures: formation of shells consisting of gold nanoparticles. Chemical Communications, 2012, 48, 3972.	2.2	26

Jerzy Choma

#	Article	IF	CITATIONS
37	An improved methodology for adsorption characterization of unmodified and modified silica gels. Journal of Colloid and Interface Science, 2003, 266, 168-174.	5.0	25
38	Assessment of reliability of the Horvath–Kawazoe pore size analysis method using argon adsorption isotherms on ordered mesoporous silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 263-269.	2.3	23
39	Highly microporous polymer-based carbons for CO2 and H2 adsorption. RSC Advances, 2014, 4, 14795.	1.7	23
40	Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption, 2016, 22, 581-588.	1.4	23
41	Recent advances in mechanochemical synthesis of mesoporous metal oxides. Materials Advances, 2021, 2, 2510-2523.	2.6	21
42	On the characterization of structural heterogeneity of microporous solids by discrete and continuous micropore distribution functions. Materials Chemistry and Physics, 1988, 19, 267-289.	2.0	20
43	Evaluation of structural heterogeneities and surface irregularities of microporous solids. Materials Chemistry and Physics, 1990, 26, 87-97.	2.0	19
44	Extension of the Langmuir equation for describing gas adsorption on heterogeneous microporous solids. Langmuir, 1989, 5, 839-844.	1.6	18
45	Development of mesoporosity in carbon spheres obtained by St¶ber method. Microporous and Mesoporous Materials, 2014, 185, 197-203.	2.2	18
46	Deposition of silver nanoparticles on silica spheres and rods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 74-79.	2.3	17
47	Development of Microporosity in Mesoporous Carbons. Topics in Catalysis, 2010, 53, 283-290.	1.3	16
48	Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons. Adsorption, 2013, 19, 563-569.	1.4	15
49	Saran-Derived Carbons for CO2and Benzene Sorption at Ambient Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 15383-15388.	1.8	15
50	High benzene adsorption capacity of micro-mesoporous carbon spheres prepared from XAD-4 resin beads with pores protected effectively by silica. Journal of Materials Science, 2019, 54, 13892-13900.	1.7	15
51	An improved method for evaluating the micropore-size distribution from adsorption isotherm. Chemical Engineering Science, 1991, 46, 3299-3301.	1.9	14
52	A model-independent analysis of nitrogen adsorption isotherms on oxidized active carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 103-111.	2.3	13
53	Synthesis of rod-like silica–gold core-shell structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 37-41.	2.3	13
54	Highly Porous Carbons Synthesized from Tannic Acid via a Combined Mechanochemical Salt-Templating and Mild Activation Strategy. Molecules, 2021, 26, 1826.	1.7	13

JERZY CHOMA

#	Article	IF	CITATIONS
55	Comparative studies of the overall adsorption isotherm associated with Dubinin-Astakhov equation. Carbon, 1990, 28, 243-246.	5.4	12
56	Correlation between adsorption of benzene from dilute aqueous solutions and benzene vapor adsorption on microporous active carbons. Carbon, 1991, 29, 1294-1296.	5.4	12
57	Benzene Adsorption Isotherms on MCM-41 and their Use for Pore Size Analysis. Adsorption, 2004, 10, 195-203.	1.4	12
58	Adsorption characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hydrothermal treatment. Applied Surface Science, 2005, 252, 562-569.	3.1	12
59	Tailoring surface and structural properties of composite materials by coupling Pt-decorated graphene oxide and ZIF-8-derived carbon. Applied Surface Science, 2018, 459, 760-766.	3.1	12
60	Characterization of microporous carbons by using TGA curves measured under controlled conditions. Thermochimica Acta, 1996, 272, 65-73.	1.2	10
61	Applicability of classical methods of pore size analysis for MCM-41 and SBA-15 silicas. Applied Surface Science, 2007, 253, 5587-5590.	3.1	10
62	Studies of surface and structural heterogeneities of microporous carbons by high-resolution thermogravimetry. Studies in Surface Science and Catalysis, 1994, 87, 613-622.	1.5	9
63	Influence of the Pore Geometry on the Micropore Size Distribution Function of Active Carbons. Adsorption Science and Technology, 1997, 15, 571-581.	1.5	9
64	Comparison of adsorption properties of MCM-41 materials obtained using cationic surfactants with octyl chain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 97-103.	2.3	9
65	Use of argon adsorption isotherms for characterizing microporous activated carbons. Fuel, 1990, 69, 516-518.	3.4	8
66	Thermogravimetric and adsorption studies of oxidized active carbons by using different probe molecules. Thermochimica Acta, 2000, 345, 165-172.	1.2	8
67	Solute adsorption from dilute solutions on structurally heterogeneous solids. Journal of Colloid and Interface Science, 1988, 125, 561-566.	5.0	6
68	Estimation of the Surface Properties of Unmodifed and Strongly Oxidized Active Carbons on the Basis of Water Vapour Adsorption Isotherms. Adsorption Science and Technology, 1998, 16, 295-302.	1.5	6
69	Synthesis and adsorption properties of colloid-imprinted mesoporous carbons using poly(vinylidene) Tj ETQq1	1 0.784314 1.4	• rgBT /Overic
70	Application of the generalized Jaroniec-Choma isotherm equation for describing benzene adsorption on acttvated carbons. Materials Chemistry and Physics, 1990, 25, 323-330.	2.0	5
71	Determination of the Specific Surface Areas of Non-Porous and Macroporous Carbons. Adsorption Science and Technology, 2001, 19, 765-776.	1.5	5
72	Comparative studies of adsorption of ethane and benzene on microporous activated carbons. Chemical Engineering Science, 1990, 45, 1539-1545.	1.9	4

JERZY CHOMA

#	Article	IF	CITATIONS
73	A comparative method for studying adsorption from binary nonelectrolytic liquid mixtures on microporous solids. Journal of Colloid and Interface Science, 1990, 135, 405-409.	5.0	4
74	Characterization of activated carbons by ktilizink the nitroken adsorption data. Materials Chemistry and Physics, 1988, 20, 179-189.	2.0	3
75	Benzene adsorption on microporous activated carbons. Carbon, 1989, 27, 485-487.	5.4	3
76	Use of a Polynomial Equation for Analyzing Low-Concentration Adsorption Measurements of Ethane on Activated Carbons. Separation Science and Technology, 1989, 24, 1355-1361.	1.3	3
77	Correlation between the bet parameters and the parameters that characterize the microporous structures of activated carbons. Materials Chemistry and Physics, 1990, 25, 287-296.	2.0	3
78	Adsorption isotherm equations associated with the gamma micropore-size distribution and their application for characterizing microporous solids. Materials Chemistry and Physics, 1989, 24, 1-12.	2.0	2
79	A new description of micropore filling and its application for characterizing microporous solids. Colloids and Surfaces, 1989, 37, 183-196.	0.9	2
80	Comparison of the equilibrium adsorption isotherms measured by the dynamic and static methods for hydrocarbons on microporous activated carbons. Carbon, 1990, 28, 737-739.	5.4	2
81	Adsorption Properties of Micro-/Meso-Porous Carbons Obtained by Colloidal Templating and Post-Synthesis KOH Activation. Adsorption Science and Technology, 2011, 29, 457-465.	1.5	2
82	An isotherm equation for solute adsorption from dilute solutions on heterogeneous solids. Carbon, 1990, 28, 734-736.	5.4	1
83	Energetic heterogeneity of oxidized activated carbon fibers. Materials Chemistry and Physics, 1992, 30, 239-243.	2.0	1
84	Synthesis of OMS Materials and Investigation of Their Acceptor–Donor Characteristics. Chromatographia, 2012, 75, 1147-1156.	0.7	1
85	Consequence of assuming gamma-type distribution for characterizing structural heterogeneity of microporous solids. Monatshefte FA1/4r Chemie, 1988, 119, 545-552.	0.9	0
86	Total specific surface area of heterogeneous microporous activated carbons. Materials Chemistry and Physics, 1990, 24, 315-320.	2.0	0