Minjie Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459745/publications.pdf

Version: 2024-02-01

76196 95083 5,917 144 40 68 citations h-index g-index papers 149 149 149 8123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano, 2017, 11, 2227-2238.	7.3	386
2	Biomimetic Hybrid Nanozymes with Self-Supplied H ⁺ and Accelerated O ₂ Generation for Enhanced Starvation and Photodynamic Therapy against Hypoxic Tumors. Nano Letters, 2019, 19, 4334-4342.	4.5	229
3	Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 2016, 6, 27421.	1.6	216
4	The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials, 2011, 32, 4609-4620.	5.7	186
5	Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. Journal of Controlled Release, 2002, 81, 201-217.	4.8	175
6	PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials, 2014, 35, 7978-7991.	5.7	140
7	Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. , 2017, 179, 158-170.		126
8	GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. Science Advances, 2020, 6, .	4.7	124
9	Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti–PD-L1 immunotherapy. Science Advances, 2020, 6, eaaz9240.	4.7	119
10	Endosomolytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4308-4322.	4.0	115
11	Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials, 2014, 35, 7157-7171.	5.7	103
12	Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano, 2020, 14, 255-271.	7.3	100
13	ROS-triggered and regenerating anticancer nanosystem: An effective strategy to subdue tumor's multidrug resistance. Journal of Controlled Release, 2014, 196, 370-383.	4.8	95
14	Bioreducible Polycations in Nucleic Acid Delivery: Past, Present, and Future Trends. Macromolecular Bioscience, 2014, 14, 908-922.	2.1	87
15	Bioreducible Cross-Linked Hyaluronic Acid/Calcium Phosphate Hybrid Nanoparticles for Specific Delivery of siRNA in Melanoma Tumor Therapy. ACS Applied Materials & 2017, 9, 14576-14589.	4.0	85
16	Size Switchable Nanoclusters Fueled by Extracellular ATP for Promoting Deep Penetration and MRIâ€Guided Tumor Photothermal Therapy. Advanced Functional Materials, 2019, 29, 1904144.	7.8	79
17	Dualâ€Function CXCR4 Antagonist Polyplexes To Deliver Gene Therapy and Inhibit Cancer Cell Invasion. Angewandte Chemie - International Edition, 2012, 51, 8740-8743.	7.2	78
18	Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. Journal of Controlled Release, 2017, 246, 110-119.	4.8	75

#	Article	IF	CITATIONS
19	Polymeric drugs: Advances in the development of pharmacologically active polymers. Journal of Controlled Release, 2015, 219, 369-382.	4.8	70
20	Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. International Journal of Pharmaceutics, 2016, 511, 524-537.	2.6	70
21	Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. Journal of Materials Chemistry, 2010, 20, 6158.	6.7	69
22	Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. Journal of Controlled Release, 2018, 274, 56-68.	4.8	68
23	Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics, 2018, 8, 5059-5071.	4.6	68
24	Nanocarrier vaccines for SARS-CoV-2. Advanced Drug Delivery Reviews, 2021, 171, 215-239.	6.6	66
25	Potential of CXCR4/CXCL12 Chemokine Axis in Cancer Drug Delivery. Current Pharmacology Reports, 2016, 2, 1-10.	1.5	65
26	Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy. Acta Biomaterialia, 2017, 53, 399-413.	4.1	65
27	Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC–ESI–MS/MS: An application for pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1072, 320-327.	1.2	64
28	CXCR4-Targeted and Redox Responsive Dextrin Nanogel for Metastatic Breast Cancer Therapy. Biomacromolecules, 2017, 18, 1793-1802.	2.6	62
29	Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. Journal of Controlled Release, 2017, 261, 126-137.	4.8	60
30	Lignin: Drug/Gene Delivery and Tissue Engineering Applications. International Journal of Nanomedicine, 2021, Volume 16, 2419-2441.	3.3	59
31	Effect of Octreotide–Polyethylene Glycol(100) Monostearate Modification on the Pharmacokinetics and Cellular Uptake of Nanostructured Lipid Carrier Loaded with Hydroxycamptothecine. Molecular Pharmaceutics, 2011, 8, 1641-1651.	2.3	58
32	Dual-Mode Avocado-like All-Iron Nanoplatform for Enhanced T ₁ /T ₂ MRI-Guided Cancer Theranostic Therapy. Nano Letters, 2020, 20, 4842-4849.	4.5	55
33	Fluorine assembly nanocluster breaks the shackles of immunosuppression to turn the cold tumor hot. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32962-32969.	3.3	52
34	Combining Fluorination and Bioreducibility for Improved siRNA Polyplex Delivery. ACS Applied Materials & Early; Interfaces, 2017, 9, 4457-4466.	4.0	50
35	Reversibly Stabilized Polycation Nanoparticles for Combination Treatment of Early- and Late-Stage Metastatic Breast Cancer. ACS Nano, 2018, 12, 6620-6636.	7.3	50
36	Near-infrared light triggered liposomes combining photodynamic and chemotherapy for synergistic breast tumor therapy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 564-570.	2.5	50

#	Article	IF	CITATIONS
37	Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor. Biomaterials, 2014, 35, 5572-5579.	5.7	48
38	Converting primary tumor towards an in situ STING-activating vaccine via a biomimetic nanoplatform against recurrent and metastatic tumors. Nano Today, 2021, 38, 101109.	6.2	47
39	Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumorin vitroandin vivo. Nanotechnology, 2010, 21, 475101.	1.3	45
40	Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and Photothermal therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2283-2294.	1.7	45
41	A novel lipoprotein-mimic nanocarrier composed of the modified protein and lipid for tumor cell targeting delivery. Journal of Controlled Release, 2010, 146, 299-308.	4.8	43
42	Chloroquine-Modified Hydroxyethyl Starch as a Polymeric Drug for Cancer Therapy. Biomacromolecules, 2017, 18, 2247-2257.	2.6	43
43	Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney International, 2020, 97, 327-339.	2.6	43
44	Glutathione Depletionâ€Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of "Cold―Tumor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
45	Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. International Journal of Pharmaceutics, 2008, 358, 198-204.	2.6	42
46	A nanoscale photothermal agent based on a metal-organic coordination polymer as a drug-loading framework for effective combination therapy. Acta Biomaterialia, 2019, 94, 435-446.	4.1	42
47	ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics, 2018, 8, 4604-4619.	4.6	40
48	Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano, 2021, 15, 10010-10024.	7.3	40
49	A Mini Review of Biodegradable Calcium Phosphate Nanoparticles for Gene Delivery. Current Pharmaceutical Biotechnology, 2014, 14, 918-925.	0.9	40
50	Development of Functional Poly(amido amine) CXCR4 Antagonists with the Ability to Mobilize Leukocytes and Deliver Nucleic Acids. Advanced Healthcare Materials, 2015, 4, 729-738.	3.9	38
51	Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Research, 2018, 11, 3746-3761.	5.8	37
52	Photoactivated Nanosheets Accelerate Nucleus Access of Cisplatin for Drugâ€Resistant Cancer Therapy. Advanced Functional Materials, 2020, 30, 2001546.	7.8	36
53	An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. International Journal of Pharmaceutics, 2012, 436, 248-257.	2.6	35
54	Fluorination Enhances Serum Stability of Bioreducible Poly(amido amine) Polyplexes and Enables Efficient Intravenous siRNA Delivery. Advanced Healthcare Materials, 2018, 7, 1700978.	3.9	35

#	Article	IF	Citations
55	Reversible Covalent Cross-Linked Polycations with Enhanced Stability and ATP-Responsive Behavior for Improved siRNA Delivery. Biomacromolecules, 2018, 19, 3776-3787.	2.6	35
56	Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. Journal of Controlled Release, 2021, 330, 977-991.	4.8	35
57	Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy. Journal of Controlled Release, 2018, 292, 78-90.	4.8	34
58	Cyclam-Modified PEI for Combined VEGF siRNA Silencing and CXCR4 Inhibition To Treat Metastatic Breast Cancer. Biomacromolecules, 2018, 19, 392-401.	2.6	34
59	Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization. International Journal of Pharmaceutics, 2013, 447, 281-292.	2.6	33
60	Advances in Stimulusâ€Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Advanced Healthcare Materials, 2018, 7, 1701070.	3.9	33
61	Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Theranostics, 2018, 8, 4305-4320.	4.6	33
62	Increased Survival by Pulmonary Treatment of Established Lung Metastases with Dual STAT3/CXCR4 Inhibition by siRNA Nanoemulsions. Molecular Therapy, 2019, 27, 2100-2110.	3.7	33
63	H ₂ O ₂ -activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomaterials Science, 2019, 7, 5359-5368.	2.6	33
64	A pH-sensitive coordination polymer network-based nanoplatform for magnetic resonance imaging-guided cancer chemo-photothermal synergistic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102071.	1.7	33
65	Synthesis of clickâ€reactive HPMA copolymers using RAFT polymerization for drug delivery applications. Journal of Polymer Science Part A, 2013, 51, 5091-5099.	2.5	31
66	Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. Journal of Controlled Release, 2016, 244, 347-356.	4.8	31
67	Treatment of acute lung injury and early- and late-stage pulmonary fibrosis with combination emulsion siRNA polyplexes. Journal of Controlled Release, 2019, 314, 12-24.	4.8	31
68	A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. Journal of NeuroImmune Pharmacology, 2021, 16, 270-288.	2.1	30
69	Arginineâ€Modified Nanostructured Lipid Carriers with Chargeâ€Reversal and pHâ€Sensitive Membranolytic Properties for Anticancer Drug Delivery. Advanced Healthcare Materials, 2017, 6, 1600693.	3.9	29
70	Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4569-4581.	4.0	29
71	Charge and Assembly Reversible Micelles Fueled by Intracellular ATP for Improved siRNA Transfection. ACS Applied Materials & ACS APPLIED & A	4.0	28
72	PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer Stem Cells. Cancers, 2021, 13, 2168.	1.7	28

#	Article	IF	CITATIONS
73	Polymeric Plerixafor: Effect of PEGylation on CXCR4 Antagonism, Cancer Cell Invasion, and DNA Transfection. Pharmaceutical Research, 2014, 31, 3538-3548.	1.7	27
74	Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials, 2016, 101, 108-120.	5.7	26
75	Oral Nanostructured Lipid Carriers Loaded with Near-Infrared Dye for Image-Guided Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25087-25095.	4.0	26
76	Coordination-driven assembly of catechol-modified chitosan for the kidney-specific delivery of salvianolic acid B to treat renal fibrosis. Biomaterials Science, 2018, 6, 179-188.	2.6	26
77	Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness. Molecular Pharmaceutics, 2016, 13, 1073-1080.	2.3	25
78	Synthesis and Evaluation of Chloroquineâ€Containing DMAEMA Copolymers as Efficient Antiâ€miRNA Delivery Vectors with Improved Endosomal Escape and Antimigratory Activity in Cancer Cells. Macromolecular Bioscience, 2018, 18, 1700194.	2.1	24
79	A facile approach for crosslinker free nano self assembly of protein for anti-tumor drug delivery: Factors' optimization, characterization and in vitro evaluation. European Journal of Pharmaceutical Sciences, 2014, 63, 53-62.	1.9	23
80	Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N -octyl- N -trimethyl chitosan micelles. International Journal of Pharmaceutics, 2016, 511, 390-402.	2.6	23
81	Chloroquine-Containing HPMA Copolymers as Polymeric Inhibitors of Cancer Cell Migration Mediated by the CXCR4/SDF-1 Chemokine Axis. ACS Macro Letters, 2016, 5, 342-345.	2.3	23
82	Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomaterialia, 2018, 82, 158-170.	4.1	23
83	Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations. Biomaterials, 2013, 34, 8843-8850.	5.7	22
84	Multistep Targeted Nano Drug Delivery System Aiming at Leukemic Stem Cells and Minimal Residual Disease. Molecular Pharmaceutics, 2013, 10, 2479-2489.	2.3	22
85	Efficient and targeted chemo-gene delivery with self-assembled fluoro-nanoparticles for liver fibrosis therapy and recurrence. Biomaterials, 2020, 261, 120311.	5.7	22
86	Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Critical Reviews in Biotechnology, 2022, 42, 1180-1212.	5.1	22
87	Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials, 2022, 285, 121562.	5.7	22
88	Effects of surface hydrophilic properties of PEG-based mucus-penetrating nanostructured lipid carriers on oral drug delivery. RSC Advances, 2016, 6, 84164-84176.	1.7	20
89	Self-assembled hemoglobin nanoparticles for improved oral photosensitizer delivery and oral photothermal therapy <i>in vivo</i> i>. Nanomedicine, 2017, 12, 1043-1055.	1.7	20
90	Combined Hydrophobization of Polyethylenimine with Cholesterol and Perfluorobutyrate Improves siRNA Delivery. Bioconjugate Chemistry, 2020, 31, 698-707.	1.8	20

#	Article	IF	Citations
91	Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor <i>in vitro</i> and <i>in vivo</i> . Drug Delivery, 2016, 23, 3562-3572.	2.5	19
92	A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Research, 2018, 11, 4627-4642.	5.8	19
93	ATP-Charged Nanoclusters Enable Intracellular Protein Delivery and Activity Modulation for Cancer Theranostics. IScience, 2020, 23, 100872.	1.9	19
94	Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. Journal of Controlled Release, 2022, 341, 300-313.	4.8	19
95	HDAC inhibitor conjugated polymeric prodrug micelles for doxorubicin delivery. Journal of Materials Chemistry B, 2017, 5, 2106-2114.	2.9	18
96	Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?. Journal of Controlled Release, 2021, 331, 246-259.	4.8	18
97	Polycation fluorination improves intraperitoneal siRNA delivery in metastatic pancreatic cancer. Journal of Controlled Release, 2021, 333, 139-150.	4.8	18
98	A multifunctional ternary Cu(II)-carboxylate coordination polymeric nanocomplex for cancer thermochemotherapy. International Journal of Pharmaceutics, 2018, 549, 1-12.	2.6	17
99	<i>In situ</i> self-assembled peptide nanofibers for cancer theranostics. Biomaterials Science, 2021, 9, 5427-5436.	2.6	17
100	Histone Deacetylase Inhibitor (HDACi) Conjugated Polycaprolactone for Combination Cancer Therapy. Biomacromolecules, 2018, 19, 1082-1089.	2.6	16
101	Synthesis and biological evaluation of resveratrol–coumarin hybrid compounds as potential antitumor agents. Medicinal Chemistry Research, 2013, 22, 1630-1640.	1.1	15
102	Pulmonary delivery of polyplexes for combined PAI-1 gene silencing and CXCR4 inhibition to treat lung fibrosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1765-1776.	1.7	15
103	Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047. PLoS ONE, 2017, 12, e0175917.	1.1	15
104	<p>CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGFβ-induced HSC-T6 cells activation</p> . International Journal of Nanomedicine, 2019, Volume 14, 2927-2944.	3.3	14
105	Synthesis and characterization of valproic acid ester pro-drug micelles via an amphiphilic polycaprolactone block copolymer design. Polymer Chemistry, 2015, 6, 2386-2389.	1.9	13
106	Intraperitoneal siRNA Nanoparticles for Augmentation of Gemcitabine Efficacy in the Treatment of Pancreatic Cancer. Molecular Pharmaceutics, 2021, 18, 4448-4458.	2.3	13
107	Perfluorocarbon Nanoemulsions Enhance Therapeutic siRNA Delivery in the Treatment of Pulmonary Fibrosis. Advanced Science, 2022, 9, e2103676.	5.6	13
108	Dual-Function Polymeric HPMA Prodrugs for the Delivery of miRNA. Molecular Pharmaceutics, 2017, 14, 1395-1404.	2.3	12

#	Article	IF	Citations
109	pH-Switchable Coordinative Micelles for Enhancing Cellular Transfection of Biocompatible Polycations. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20689-20698.	4.0	12
110	Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia. Cancer Gene Therapy, 2020, 27, 45-55.	2.2	12
111	"Star―miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. Journal of Controlled Release, 2020, 326, 615-627.	4.8	12
112	A rutin nanocrystal gel as an effective dermal delivery system for enhanced anti-photoaging application. Drug Development and Industrial Pharmacy, 2021, 47, 429-439.	0.9	12
113	"Attractive/adhesion force―dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. Journal of Controlled Release, 2022, 341, 892-903.	4.8	12
114	Simultaneous Quantitation of Lipid Biomarkers for Inflammatory Bowel Disease Using LC–MS/MS. Metabolites, 2021, 11, 106.	1.3	11
115	Synergetic regulation of kupffer cells, extracellular matrix and hepatic stellate cells with versatile CXCR4-inhibiting nanocomplex for magnified therapy in liver fibrosis. Biomaterials, 2022, 284, 121492.	5.7	11
116	Conjugate Polyplexes with Anti-Invasive Properties and Improved siRNA Delivery In Vivo. Bioconjugate Chemistry, 2018, 29, 296-305.	1.8	10
117	Cholesterol Modification Enhances Antimetastatic Activity and siRNA Delivery Efficacy of Poly(ethylenimine)â€Based CXCR4 Antagonists. Macromolecular Bioscience, 2018, 18, e1800234.	2.1	10
118	Polymeric micelleplexes for improved photothermal endosomal escape and delivery of siRNA. Polymers for Advanced Technologies, 2018, 29, 2593-2600.	1.6	10
119	Determinants of preferential renal accumulation of synthetic polymers in acute kidney injury. International Journal of Pharmaceutics, 2019, 568, 118555.	2.6	10
120	Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. Advanced Therapeutics, 2019, 2, 1900039.	1.6	10
121	Silencing of Gasdermin D by siRNA-Loaded PEI-Chol Lipopolymers Potently Relieves Acute Gouty Arthritis through Inhibiting Pyroptosis. Molecular Pharmaceutics, 2021, 18, 667-678.	2.3	10
122	Preparation of loratadine nanocrystal tablets to improve the solubility and dissolution for enhanced oral bioavailability. Journal of Pharmacy and Pharmacology, 2021, 73, 937-946.	1.2	10
123	Polymeric Prodrugs Targeting Polyamine Metabolism Inhibit Zika Virus Replication. Molecular Pharmaceutics, 2018, 15, 4284-4295.	2.3	9
124	Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1528.	3.3	8
125	Sulfotanshinone IIA Sodium Ameliorates Glucose Peritoneal Dialysis Solution-Induced Human Peritoneal Mesothelial Cell Injury via Suppression of ASK1-P38-mediated Oxidative Stress. Cellular Physiology and Biochemistry, 2018, 46, 2434-2444.	1.1	7
126	Synthesis and biological characterization of clicked chloroquine copolymers as macromolecular inhibitors of cancer cell migration. Journal of Polymer Science Part A, 2019, 57, 2235-2242.	2.5	7

#	Article	IF	Citations
127	CXCR4-Receptor-Targeted Liposomes for the Treatment of Peritoneal Fibrosis. Molecular Pharmaceutics, 2019, 16, 2728-2741.	2.3	7
128	Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics, 2022, 14, 669.	2.0	6
129	Glutathione Depletionâ€Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of "Coldâ€Iumor. Angewandte Chemie, 0, , .	1.6	6
130	The Mechanisms for Enhanced Oral Absorption of Hydroxysafflor Yellow A by Chuanxiong Volatile Oil. Planta Medica, 2010, 76, 786-792.	0.7	5
131	Dendritic polyglycerol with secondary amine shell as an efficient gene delivery vector with reduced toxicity. Polymers for Advanced Technologies, 2014, 25, 940-947.	1.6	5
132	Study on the Inhibitory Effects of Naringenin-Loaded Nanostructured Lipid Carriers Against Nonalcoholic Fatty Liver Disease. Journal of Biomedical Nanotechnology, 2021, 17, 942-951.	0.5	5
133	Dynamically Deformable Protein Delivery Strategy Disassembles Neutrophil Extracellular Traps to Prevent Liver Metastasis. Advanced Functional Materials, 2021, 31, 2105089.	7.8	5
134	Highly Aggressive and Radiation-Resistant, "Atypical―and Silent Pituitary Corticotrophic Carcinoma: A Case Report and Review of the Literature. Case Reports in Oncology, 2019, 12, 139-146.	0.3	4
135	Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10015-10029.	4.0	3
136	Breaking Immunosuppressive Barriers by Engineered Nanoplatforms for Turning Cold Tumor to Hot. Advanced Therapeutics, 2022, 5, .	1.6	3
137	Study of Renal Accumulation of Targeted Polycations in Acute Kidney Injury. Biomacromolecules, 2022, 23, 2064-2074.	2.6	3
138	Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomaterials Science, 2022, 10, 3637-3646.	2.6	3
139	Self-Assembled Alkylated Polyamine Analogs as Supramolecular Anticancer Agents. Molecules, 2022, 27, 2441.	1.7	2
140	Synthesis of Bioreducible Polycations with Controlled Topologies. Methods in Molecular Biology, 2019, 1943, 27-38.	0.4	1
141	Crosslinked Protein Delivery Strategy with Precise Activity Regulation Properties for Cancer Therapy and Gene Editing. Advanced Healthcare Materials, 2022, 11, e2102329.	3.9	1
142	Tissue-Specific Regulation of Reactive Oxygen Species by an ATP-Responsive Nanoregulator Enhances Anticancer Efficacy and Reduces Anthracycline-Induced Cardiotoxicity. ACS Applied Bio Materials, 2020, 3, 8000-8011.	2.3	0
143	Development of Relaxin onjugated Nanoparticles to Target and Activate RXFP1 in Hepatic Stellate Cells. FASEB Journal, 2021, 35, .	0.2	0
144	Rýcktitelbild: Glutathione Depletionâ€Induced Activation of Dimersomes for Potentiating the Ferroptosis and Immunotherapy of "Cold―Tumor (Angew. Chem. 22/2022). Angewandte Chemie, 2022, 134, .	1.6	0