
Mark Rp Tingay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459576/publications.pdf Version: 2024-02-01

MADE PO TINCAY

#	Article	IF	CITATIONS
1	Early Burial Mud Diapirism: Lateral Overpressure Transfer and Slope Failure in a Deformed Foredeep. Geophysical Research Letters, 2021, 48, e2021GL094922.	4.0	0
2	An open-access stress magnitude database for Germany and adjacent regions. Geothermal Energy, 2020, 8, .	1.9	15
3	Rapid collaborative knowledge building via Twitter after significant geohazard events. Geoscience Communication, 2020, 3, 129-146.	0.9	26
4	An alternative review of facts, coincidences and past and future studies of the Lusi eruption. Marine and Petroleum Geology, 2018, 95, 345-361.	3.3	14
5	Introduction to this special section: Geomechanics. The Leading Edge, 2018, 37, 332-332.	0.7	0
6	New constraints on the neotectonic stress pattern of the Flinders and Mount Lofty Ranges, South Australia. Exploration Geophysics, 2018, 49, 111-124.	1.1	8
7	Stratigraphy, Tectonics and Hydrocarbon Habitat of the Abadan Plain Basin: A Geological Review of a Prolific Middle Eastern Hydrocarbon Province. Geosciences (Switzerland), 2018, 8, 496.	2.2	14
8	New constraints on the neotectonic stress pattern of the Flinders and Mount Lofty Ranges, South Australia. Exploration Geophysics, 2018, 49, 125-125.	1.1	0
9	The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 2018, 744, 484-498.	2.2	432
10	Presentâ€day stress orientation in the Clarenceâ€Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations. Basin Research, 2017, 29, 622-640.	2.7	68
11	The present-day stress field of Australia. Earth-Science Reviews, 2017, 168, 165-189.	9.1	74
12	Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models. Australian Journal of Earth Sciences, 2017, 64, 435-454.	1.0	33
13	ASEG-PESA 24th International Geophysical Conference and Exhibition: Special Issue on Case Studies. Exploration Geophysics, 2016, 47, 169.	1.1	0
14	The present-day stress field of New South Wales, Australia. Australian Journal of Earth Sciences, 2016, 63, 1-21.	1.0	48
15	The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. Marine and Petroleum Geology, 2016, 77, 776-790.	3.3	83
16	Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand. Journal of Geophysical Research: Solid Earth, 2016, 121, 6053-6070.	3.4	20
17	Introduction to special section: Abnormal pore pressure. Interpretation, 2015, 3, SEi-SEi.	1.1	0
18	Influence of seismicity on the Lusi mud eruption. Geophysical Research Letters, 2015, 42, 7436-7443.	4.0	6

MARK RP TINGAY

#	Article	IF	CITATIONS
19	Initiation of the Lusi mudflow disaster. Nature Geoscience, 2015, 8, 493-494.	12.9	32
20	Initial pore pressures under the Lusi mud volcano, Indonesia. Interpretation, 2015, 3, SE33-SE49.	1.1	27
21	Reprint of: Comparison of modern fluid distribution, pressure and flow in sediments associated with anticlines growing in deepwater (Brunei) and continental environments (Iran). Marine and Petroleum Geology, 2014, 55, 230-249.	3.3	16
22	Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics, 2014, 52, 195-205.	3.4	57
23	Comparison of modern fluid distribution, pressure and flow in sediments associated with anticlines growing in deepwater (Brunei) and continental environments (Iran). Marine and Petroleum Geology, 2014, 51, 210-229.	3.3	17
24	The Present-day stress pattern in the Middle East and Northern Africa and their importance: The World Stress Map database contains the lowest wellbore information in these petroliferous areas. , 2014, , .		3
25	Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin. AAPG Bulletin, 2013, 97, 639-672.	1.5	96
26	Evidence for non-Andersonian faulting above evaporites in the Nile Delta. Geological Society Special Publication, 2012, 367, 155-170.	1.3	9
27	Modelling of sediment wedge movement along low-angle detachments using ABAQUSâ,,¢. Geological Society Special Publication, 2012, 367, 171-183.	1.3	2
28	Stress deflections around salt diapirs in the Gulf of Mexico. Geological Society Special Publication, 2012, 367, 141-153.	1.3	13
29	Factors influencing fractures networks within Permian shale intervals in the Cooper Basin, South Australia. APPEA Journal, 2012, 52, 213.	0.2	4
30	Reassessing the in-situ stress regimes of Australia's petroleum basins. APPEA Journal, 2012, 52, 415.	0.2	8
31	Analysis of overpressure and its generating mechanisms in the northern Carnarvon Basin from drilling data. APPEA Journal, 2012, 52, 375.	0.2	2
32	Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth-Science Reviews, 2011, 104, 41-91.	9.1	244
33	Structural controls on mud volcano vent distributions: examples from Azerbaijan and Lusi, east Java. Journal of the Geological Society, 2011, 168, 1013-1030.	2.1	38
34	Fluid transport properties and estimation of overpressure at the Lusi mud volcano, East Java Basin (Tanikawa et al., 2010). Engineering Geology, 2011, 121, 97-99.	6.3	6
35	Probabilistic longevity estimate for the LUSI mud volcano, East Java. Journal of the Geological Society, 2011, 168, 517-523.	2.1	46
36	Overpressures in the central Otway Basin: the result of rapid Pliocene–Recent sedimentation?. APPEA Journal, 2011, 51, 439.	0.2	5

MARK RP TINGAY

#	Article	IF	CITATIONS
37	Present-day stress orientation in Thailand's basins. Journal of Structural Geology, 2010, 32, 235-248.	2.3	67
38	Poroelastic contribution to the reservoir stress path. International Journal of Rock Mechanics and Minings Sciences, 2010, 47, 1104-1113.	5.8	83
39	Presentâ€day stresses in Brunei, NW Borneo: superposition of deltaic and active margin tectonics. Basin Research, 2010, 22, 236-247.	2.7	21
40	Anatomy of the â€~Lusi' Mud Eruption, East Java. ASEG Extended Abstracts, 2010, 2010, 1-6.	0.1	3
41	Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 2010, 492, 192-200.	2.2	134
42	Balancing deformation in NW Borneo: Quantifying plate-scale vs. gravitational tectonics in a delta and deepwater fold-thrust belt system. Marine and Petroleum Geology, 2010, 27, 238-246.	3.3	57
43	Sawolo etÂal. (2009) the Lusi mud volcano controversy: Was it caused by drilling?. Marine and Petroleum Geology, 2010, 27, 1651-1657.	3.3	27
44	Present-day stress field of Southeast Asia. Tectonophysics, 2010, 482, 92-104.	2.2	82
45	Present-day stress orientation in the Molasse Basin. Tectonophysics, 2010, 482, 129-138.	2.2	73
46	Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 2010, 482, 3-15.	2.2	453
47	Present-day stress and neotectonic provinces of the Baram Delta and deep-water fold–thrust belt. Journal of the Geological Society, 2009, 166, 197-200.	2.1	41
48	Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. AAPG Bulletin, 2009, 93, 51-74.	1.5	219
49	Present-day stress and neotectonics of Brunei: Implications for petroleum exploration and production. AAPG Bulletin, 2009, 93, 75-100.	1.5	100
50	Relationship between structural style, overpressures, and modern stress, Baram Delta Province, northwest Borneo. Journal of Geophysical Research, 2008, 113, .	3.3	58
51	Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 2008, 25, 606-624.	3.3	97
52	The East Java mud volcano (2006 to present): An earthquake or drilling trigger?. Earth and Planetary Science Letters, 2008, 272, 627-638.	4.4	113
53	Triggering of the Lusi mud eruption: Earthquake versus drilling initiation. Geology, 2008, 36, 639.	4.4	61
54	†Vertically transferred' overpressures in Brunei: Evidence for a new mechanism for the formation of high-magnitude overpressure. Geology, 2007, 35, 1023.	4.4	93

MARK RP TINGAY

#	Article	IF	CITATIONS
55	World stress map published. Eos, 2007, 88, 504-504.	0.1	9
56	Plate boundary forces are not enough: Second―and thirdâ€order stress patterns highlighted in the World Stress Map database. Tectonics, 2007, 26, .	2.8	162
57	Understanding tectonic stress in the oil patch: The World Stress Map Project. The Leading Edge, 2005, 24, 1276-1282.	0.7	80
58	Present-day stress orientation in Brunei: a snapshot of â€~prograding tectonics' in a Tertiary delta. Journal of the Geological Society, 2005, 162, 39-49.	2.1	67
59	Stress maps in a minute: The 2004 world stress map release. Eos, 2004, 85, 521.	0.1	33
60	Variation in vertical stress in the Baram Basin, Brunei: tectonic and geomechanical implications. Marine and Petroleum Geology, 2003, 20, 1201-1212.	3.3	71
61	Pore pressure/stress coupling in Brunei Darussalam — implications for shale injection. Geological Society Special Publication, 2003, 216, 369-379.	1.3	27