Kai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459572/publications.pdf

Version: 2024-02-01

		1162367	1372195
11	471	8	10
papers	citations	h-index	g-index
11	11	11	252
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. Journal of Hazardous Materials, 2020, 395, 122623.	6.5	174
2	The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: Surface area versus electrochemical property. Chemical Engineering Journal, 2021, 406, 126851.	6.6	68
3	New insights into stoichiometric efficiency and synergistic mechanism of persulfate activation by zero-valent bimetal (Iron/Copper) for organic pollutant degradation. Journal of Hazardous Materials, 2021, 403, 123669.	6.5	59
4	AÂhighlyÂporousÂanimalÂbone-derivedÂchar with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. Journal of Environmental Sciences, 2021, 104, 27-39.	3.2	47
5	Carbon-based strategy enables sustainable remediation of paddy soils in harmony with carbon neutrality. , 2022, 1 , .		39
6	Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. Journal of Hazardous Materials, 2022, 425, 127780.	6.5	21
7	Biogeochemical Fe(II) generators as a new strategy for limiting Cd uptake by rice and its implication for agricultural sustainability. Science of the Total Environment, 2022, 820, 153306.	3.9	20
8	Sustainability assessment and carbon budget of chemical stabilization based multi-objective remediation of Cd contaminated paddy field. Science of the Total Environment, 2022, 819, 152022.	3.9	18
9	Phase transformation of nanosized zero-valent iron modulated by As(III) determines heavy metal passivation. Water Research, 2022, 221, 118804.	5.3	18
10	Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate. Chinese Journal of Chemical Engineering, 2022, 44, 447-455.	1.7	5
11	Emerging investigator series: 3D graphene anchored zerovalent Fe/Cu aerogel activating persulfate for efficiently 2,4 dichlorophenol degradation over a broad pH range. Environmental Science: Water Research and Technology, 2021, 7, 714-725.	1.2	2