
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The iPSC perspective on schizophrenia. Trends in Neurosciences, 2022, 45, 8-26.	8.6	24
2	Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation. Journal of Biological Chemistry, 2022, 298, 101721.	3.4	2
3	CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants, 2022, 11, 405.	5.1	11
4	Contribution of astrocytes to familial risk and clinical manifestation of schizophrenia. Glia, 2022, 70, 650-660.	4.9	12
5	Selective ferroptosis vulnerability due to familial Alzheimer's disease presenilin mutations. Cell Death and Differentiation, 2022, 29, 2123-2136.	11.2	32
6	Neuron-astrocyte transmitophagy is altered in Alzheimer's disease. Neurobiology of Disease, 2022, 170, 105753.	4.4	27
7	Microglial amyloid beta clearance is driven by PIEZO1 channels. Journal of Neuroinflammation, 2022, 19, .	7.2	45
8	Metabolic and immune dysfunction of glia in neurodegenerative disorders: Focus on iPSC models. Stem Cells, 2021, 39, 256-265.	3.2	7
9	Studying non–cell-autonomous neurodegeneration in Parkinson's disease with induced pluripotent stem cells. , 2021, , 251-276.		0
10	An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo. Scientific Reports, 2021, 11, 3518.	3.3	20
11	Molecular signaling pathways underlying schizophrenia. Schizophrenia Research, 2021, 232, 33-41.	2.0	14
12	Blood–Brain Barrier and Neurodegenerative Diseases—Modeling with iPSC-Derived Brain Cells. International Journal of Molecular Sciences, 2021, 22, 7710.	4.1	36
13	Systemic Inflammation Induced Changes in Protein Expression of ABC Transporters and Ionotropic Glutamate Receptor Subunit 1 in the Cerebral Cortex of Familial Alzheimer`s Disease Mouse Model. Journal of Pharmaceutical Sciences, 2021, 110, 3953-3962.	3.3	14
14	Neuronal Dynamics and miRNA Signaling Differ between SH-SY5Y APPSwe and PSEN1 Mutant iPSC-Derived AD Models upon Modulation with miR-124 Mimic and Inhibitor. Cells, 2021, 10, 2424.	4.1	16
15	Neurobiological roots of psychopathy. Molecular Psychiatry, 2020, 25, 3432-3441.	7.9	21
16	NFâ€E2â€related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilinâ€1 mutated Alzheimer's disease astrocytes. Glia, 2020, 68, 589-599.	4.9	27
17	Generation of a human induced pluripotent stem cell line (UEFi003-A) carrying heterozygous A673T variant in amyloid precursor protein associated with a reduced risk of Alzheimer's disease. Stem Cell Research, 2020, 48, 101968.	0.7	5
18	Metabolic alterations in Parkinson's disease astrocytes. Scientific Reports, 2020, 10, 14474.	3.3	104

#	Article	IF	CITATIONS
19	Intracerebral overexpression of miR-669c is protective in mouse ischemic stroke model by targeting MyD88 and inducing alternative microglial/macrophage activation. Journal of Neuroinflammation, 2020, 17, 194.	7.2	22
20	Altered Brain Endothelial Cell Phenotype from a Familial Alzheimer Mutation and Its Potential Implications for Amyloid Clearance and Drug Delivery. Stem Cell Reports, 2020, 14, 924-939.	4.8	63
21	Developmental Dysfunction of the Central Nervous System Lymphatics Modulates the Adaptive Neuro-Immune Response in the Perilesional Cortex in a Mouse Model of Traumatic Brain Injury. Frontiers in Immunology, 2020, 11, 559810.	4.8	12
22	Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics, 2019, 16, 1304-1319.	4.4	77
23	Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice. Human Molecular Genetics, 2019, 28, 3309-3322.	2.9	9
24	O7.7. NEUROBIOLOGICAL ROOTS OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S182-S182.	4.3	0
25	Sex-specific transcriptional and proteomic signatures in schizophrenia. Nature Communications, 2019, 10, 3933.	12.8	41
26	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	4.8	132
27	Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cellular and Molecular Life Sciences, 2019, 76, 2739-2760.	5.4	88
28	Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Reports, 2019, 6, 74-86.	0.3	18
29	PPARβ∫δâ€agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia, 2019, 67, 146-159.	4.9	46
30	Cull(atsm) Attenuates Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 668.	2.8	26
31	Generation of a human induced pluripotent stem cell line from a patient with a rare A673T variant in amyloid precursor protein gene that reduces the risk for Alzheimer's disease. Stem Cell Research, 2018, 30, 96-99.	0.7	9
32	Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Frontiers in Physiology, 2018, 9, 80.	2.8	110
33	Generation of a human induced pluripotent stem cell line (LL008 1.4) from a familial Alzheimer's disease patient carrying a double KM670/671NL (Swedish) mutation in APP gene. Stem Cell Research, 2018, 31, 181-185.	0.7	7
34	ADAMTSâ€4 in central nervous system pathologies. Journal of Neuroscience Research, 2017, 95, 1703-1711.	2.9	12
35	The Copper bis(thiosemicarbazone) Complex Cull(atsm) Is Protective Against Cerebral Ischemia Through Modulation of the Inflammatory Milieu. Neurotherapeutics, 2017, 14, 519-532.	4.4	42
36	Loss of CLN5 causes altered neurogenesis in a childhood neurodegenerative disorder. DMM Disease Models and Mechanisms, 2017, 10, 1089-1100.	2.4	14

#	Article	IF	CITATIONS
37	PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports, 2017, 9, 1885-1897.	4.8	239
38	Sulfosuccinimidyl oleate sodium is neuroprotective and alleviates stroke-induced neuroinflammation. Journal of Neuroinflammation, 2017, 14, 237.	7.2	18
39	Deletion of Nuclear Factor kappa B p50 Subunit Decreases Inflammatory Response and Mildly Protects Neurons from Transient Forebrain Ischemia-induced Damage. , 2016, 7, 450.		14
40	Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment. Frontiers in Cellular Neuroscience, 2016, 10, 279.	3.7	5
41	Perineuronal nets in neurodegeneration. Oncotarget, 2016, 7, 78224-78225.	1.8	6
42	Antiâ€inflammatory effects of ADAMTSâ€4 in a mouse model of ischemic stroke. Glia, 2016, 64, 1492-1507.	4.9	35
43	Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy. Scientific Reports, 2016, 6, 33176.	3.3	29
44	Creation of a library of induced pluripotent stem cells from Parkinsonian patients. Npj Parkinson's Disease, 2016, 2, 16009.	5.3	74
45	Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes. Journal of Neuroinflammation, 2016, 13, 49.	7.2	38
46	ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2016, 11, 10.	10.8	25
47	Exosomes as new diagnostic tools in CNS diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 403-410.	3.8	164
48	Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation. Brain, Behavior, and Immunity, 2015, 49, 322-336.	4.1	107
49	Applications of the Keap1–Nrf2 system for gene and cell therapy. Free Radical Biology and Medicine, 2015, 88, 350-361.	2.9	41
50	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	10.2	4,129
51	Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain, Behavior, and Immunity, 2015, 44, 68-81.	4.1	105
52	Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2014, 8, 126.	3.7	63
53	The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2014, 8, 131.	3.7	111
54	Complex regulation of acute and chronic neuroinflammatory responses in mouse models deficient for nuclear factor kappa B p50 subunit. Neurobiology of Disease, 2014, 64, 16-29.	4.4	25

#	Article	IF	CITATIONS
55	Does Nrf2 Gene Transfer Facilitate Recovery After Contusion Spinal Cord Injury?. Antioxidants and Redox Signaling, 2014, 20, 1313-1323.	5.4	17
56	Nrf2 Regulates Neurogenesis and Protects Neural Progenitor Cells Against Al̂² Toxicity. Stem Cells, 2014, 32, 1904-1916.	3.2	110
57	tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing neuroplasticity following spinal cord injury. Neurobiology of Disease, 2014, 66, 28-42.	4.4	42
58	Western-type diet modulates inflammatory responses and impairs functional outcome following permanent middle cerebral artery occlusion in aged mice expressing the human apolipoprotein E4 allele. Journal of Neuroinflammation, 2013, 10, 102.	7.2	32
59	Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. International Journal of Biochemistry and Cell Biology, 2013, 45, 1802-1812.	2.8	70
60	ADAMTS proteoglycanases in the physiological and pathological central nervous system. Journal of Neuroinflammation, 2013, 10, 133.	7.2	77
61	Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection. Aging Cell, 2013, 12, 842-850.	6.7	35
62	Brain Environment and Alzheimer's Disease Mutations Affect the Survival, Migration and Differentiation of Neural Progenitor Cells. Current Alzheimer Research, 2012, 9, 1030-1042.	1.4	16
63	Animal Models of Alzheimer's Disease: Utilization of Transgenic Alzheimer's Disease Models in Studies of Amyloid Beta Clearance. Current Translational Geriatrics and Experimental Gerontology Reports, 2012, 1, 11-20.	0.7	8
64	Production of monocytic cells from bone marrow stem cells: therapeutic usage in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2012, 16, 1060-1073.	3.6	26
65	Adult and neonatal astrocytes exhibit diverse gene expression profiles in response to beta amyloid <i>ex vivo</i> . World Journal of Neuroscience, 2012, 02, 57-67.	0.1	5
66	Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications. International Journal of Alzheimer's Disease, 2011, 2011, 1-8.	2.0	50
67	Targeting Clycogen Synthase Kinase-3 <i>β</i> for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	46
68	Gender-Specific Mechanism of Synaptic Impairment and Its Prevention by GCSF in a Mouse Model of ALS. Frontiers in Cellular Neuroscience, 2011, 5, 26.	3.7	47
69	Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2011, 8, 74.	7.2	58
70	Multiple cellular and molecular mechanisms Are involved in human AÎ ² clearance by transplanted adult astrocytes. Glia, 2011, 59, 1643-1657.	4.9	78
71	The role and therapeutic potential of monocytic cells in Alzheimer's disease. Glia, 2010, 58, 889-900.	4.9	84
72	Human intravenous immunoglobulin provides protection against AÎ ² toxicity by multiple mechanisms in a mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2010, 7, 90.	7.2	90

#	Article	IF	CITATIONS
73	Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16505-16510.	7.1	258
74	Transplanted astrocytes internalize deposited βâ€amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia, 2008, 56, 154-163.	4.9	148
75	Minocycline reduces engraftment and activation of bone marrowâ€derived cells but sustains their phagocytic activity in a mouse model of Alzheimer's disease. Glia, 2008, 56, 1767-1779.	4.9	42
76	Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Molecular and Cellular Neurosciences, 2008, 39, 302-313.	2.2	218
77	Improving Outcome after Stroke: Overcoming the Translational Roadblock. Cerebrovascular Diseases, 2008, 25, 268-278.	1.7	237
78	Pyrrolidine Dithiocarbamate Activates Akt and Improves Spatial Learning in APP/PS1 Mice without Affecting Â-Amyloid Burden. Journal of Neuroscience, 2007, 27, 3712-3721.	3.6	144
79	Antioxidant pyrrolidine dithiocarbamate activates Akt–GSK signaling and is neuroprotective in neonatal hypoxia–ischemia. Free Radical Biology and Medicine, 2006, 40, 1776-1784.	2.9	49
80	beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8852-8857.	7.1	45
81	Minocycline Protects against Permanent Cerebral Ischemia in Wild Type but Not in Matrix Metalloprotease-9-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 460-467.	4.3	115
82	Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to β-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiology of Disease, 2005, 18, 134-142.	4.4	273
83	Interactions between Alzheimer's disease and cerebral ischemia—focus on inflammation. Brain Research Reviews, 2005, 48, 240-250.	9.0	134
84	The Microglia-activating Potential of Thrombin. Journal of Biological Chemistry, 2004, 279, 51880-51887.	3.4	50
85	Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. Journal of Neurochemistry, 2004, 91, 755-765.	3.9	80
86	Nuclear Factor-κB Contributes to Infarction After Permanent Focal Ischemia. Stroke, 2004, 35, 987-991.	2.0	261
87	β-Amyloid precursor protein transgenic mice that harbor diffuse Aβ deposits but do not form plaques show increased ischemic vulnerability: Role of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1610-1615.	7.1	151
88	Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. Journal of Neuroscience, 2001, 21, 2580-2588.	3.6	885
89	Astrocytes protect neurons from nitric oxide toxicity by a glutathioneâ€dependent mechanism. Journal of Neurochemistry, 2001, 77, 1601-1610.	3.9	217
90	Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. Journal of Neurochemistry, 2001, 78, 1409-1414.	3.9	84

#	Article	IF	CITATIONS
91	Histochemical detection of age- and injury-related changes in signal transduction in the superior cervical ganglion. Microscopy Research and Technique, 1996, 35, 20-31.	2.2	1