

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adoption of climate-smart agriculture technology in drought-prone area of India – implications on farmers' livelihoods. Journal of Agribusiness in Developing and Emerging Economies, 2022, 12, 824-848.	2.0	9
2	Impact of long term conservation agriculture on soil quality under cereal based systems of North West India. Geoderma, 2022, 405, 115391.	5.1	21
3	Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India:ÂEvidence based insights from heterogeneous farmers' practices. Field Crops Research, 2022, 275, 108328.	5.1	22
4	Stability of humic acid carbon under conservation agriculture practices. Soil and Tillage Research, 2022, 216, 105240.	5.6	14
5	Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture. European Journal of Agronomy, 2022, 133, 126417.	4.1	13
6	Influence of Residue Type and Method of Placement on Dynamics of Decomposition and Nitrogen Release in Maize-Wheat-Mungbean Cropping on Permanent Raised Beds: A Litterbag Study. Sustainability, 2022, 14, 864.	3.2	5
7	Climate smart agricultural practices improve soil quality through organic carbon enrichment and lower greenhouse gas emissions in farms of bread bowl of India. Soil Research, 2022, 60, 455-469.	1.1	8
8	Redesigning of Farming Systems Using a Multi-Criterion Assessment Tool for Sustainable Intensification and Nutritional Security in Northwestern India. Sustainability, 2022, 14, 3892.	3.2	5
9	A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties. Agronomy, 2022, 12, 658.	3.0	3
10	Conservation Agriculture Benefits Indian Farmers, but Technology Targeting Needed for Greater Impacts. Frontiers in Agronomy, 2022, 4, .	3.3	7
11	Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. , 2022, 1, 86-101.		18
12	Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains. Field Crops Research, 2022, 282, 108519.	5.1	14
13	The optimization of conservation agriculture practices requires attention to location-specific performance: Evidence from large scale gridded simulations across South Asia. Field Crops Research, 2022, 282, 108508.	5.1	8
14	Longâ€ŧerm conservation agriculture helps in the reclamation of sodic soils in major agriâ€food systems. Land Degradation and Development, 2022, 33, 2423-2439.	3.9	2
15	Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus. Energy, 2022, 254, 124243.	8.8	6
16	Energy and economic efficiency of climate-smart agriculture practices in a rice–wheat cropping system of India. Scientific Reports, 2022, 12, .	3.3	14
17	Changing agricultural stubble burning practices in the Indo-Gangetic plains: is the Happy Seeder a profitable alternative?. International Journal of Agricultural Sustainability, 2021, 19, 128-151.	3.5	19
18	Conservation Agriculture: factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India– a review. International Journal of Agricultural Sustainability, 2021, 19, 40-55.	3.5	28

#	Article	IF	CITATIONS
19	Tillage, green manure and residue management accelerate soil carbon pools and hydrolytic enzymatic activities for conservation agriculture based rice-wheat systems. Communications in Soil Science and Plant Analysis, 2021, 52, 470-486.	1.4	14
20	Automation in drip irrigation for enhancing water use efficiency in cereal systems of South Asia: Status and prospects. Advances in Agronomy, 2021, 167, 247-300.	5.2	13
21	Crop nutrient management using Nutrient Expert improves yield, increases farmers' income and reduces greenhouse gas emissions. Scientific Reports, 2021, 11, 1564.	3.3	47
22	Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north-west India. European Journal of Soil Biology, 2021, 103, 103292.	3.2	31
23	Mitigating agriculture's contribution to air pollution in India. Lancet Planetary Health, The, 2021, 5, e186.	11.4	3
24	Factors affecting farmers' use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research, 2021, 28, 51480-51496.	5.3	46
25	Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy, 2021, 11, 1681.	3.0	32
26	Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains. Scientific Reports, 2021, 11, 15901.	3.3	10
27	Water budgeting in conservation agriculture-based sub-surface drip irrigation in tropical maize using HYDRUS-2D in South Asia. Scientific Reports, 2021, 11, 16770.	3.3	9
28	Response and resilience of Asian agrifood systems to COVID-19: An assessment across twenty-five countries and four regional farming and food systems. Agricultural Systems, 2021, 193, 103168.	6.1	41
29	Farm typology for planning targeted farming systems interventions for smallholders in Indo-Gangetic Plains of India. Scientific Reports, 2021, 11, 20978.	3.3	9
30	Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints. Agronomy, 2021, 11, 2320.	3.0	10
31	Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India. Agriculture (Switzerland), 2021, 11, 1269.	3.1	10
32	Using Sentinel-2 to Track Field-Level Tillage Practices at Regional Scales in Smallholder Systems. Remote Sensing, 2021, 13, 5108.	4.0	4
33	Does climate-smart village approach influence gender equality in farming households? A case of two contrasting ecologies in India. Climatic Change, 2020, 158, 77-90.	3.6	20
34	Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environment, Development and Sustainability, 2020, 22, 5045-5075.	5.0	294
35	Evaluation of N fertilization management strategies for increasing crop yields and nitrogen use efficiency in furrow-irrigated maize–wheat system under permanent raised bed planting. Archives of Agronomy and Soil Science, 2020, 66, 1302-1317.	2.6	4
36	Identifying optimum rates of fertilizer nitrogen application to maximize economic return and minimize nitrous oxide emission from rice–wheat systems in the Indo-Gangetic Plains of India. Archives of Agronomy and Soil Science, 2020, 66, 2039-2054.	2.6	31

#	Article	IF	CITATIONS
37	Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India. Agricultural Systems, 2020, 185, 102954.	6.1	58
38	Farm-level exploration of economic and environmental impacts of sustainable intensification of rice-wheat cropping systems in the Eastern Indo-Gangetic plains. European Journal of Agronomy, 2020, 121, 126157.	4.1	12
39	Learning adaptation to climate change from past climate extremes:. International Journal of Climate Change Strategies and Management, 2020, 12, 128-146.	2.9	10
40	Agricultural sustainability under emerging climatic variability: the role of climate-smart agriculture and relevant policies in India. International Journal of Innovation and Sustainable Development, 2020, 14, 219.	0.4	43
41	Topsoil Bacterial Community Changes and Nutrient Dynamics Under Cereal Based Climate-Smart Agri-Food Systems. Frontiers in Microbiology, 2020, 11, 1812.	3.5	10
42	Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India. Agricultural Systems, 2020, 185, 102942.	6.1	16
43	Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Scientific Reports, 2020, 10, 19267.	3.3	26
44	Portfolios of Climate Smart Agriculture Practices in Smallholder Rice-Wheat System of Eastern Indo-Gangetic Plains—Crop Productivity, Resource Use Efficiency and Environmental Foot Prints. Agronomy, 2020, 10, 1561.	3.0	16
45	Major Climate risks and Adaptation Strategies of Smallholder Farmers in Coastal Bangladesh. Environmental Management, 2020, 66, 105-120.	2.7	67
46	Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy, 2020, , 39-116.	5.2	67
47	Conservation Agriculture-based Sustainable Intensification of Cereal Systems Leads to Energy Conservation, Higher Productivity and Farm Profitability. Environmental Management, 2020, 65, 774-786.	2.7	37
48	Indian agriculture, air pollution, and public health in the age of COVID. World Development, 2020, 135, 105064.	4.9	15
49	Maize yield in smallholder agriculture system—An approach integrating socio-economic and crop management factors. PLoS ONE, 2020, 15, e0229100.	2.5	35
50	Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indoâ€Gangetic Plains. Soil Use and Management, 2020, 36, 429-438.	4.9	31
51	Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renewable Energy, 2020, 155, 1372-1382.	8.9	52
52	Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability, 2020, 3, 336-343.	23.7	135
53	Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil and Tillage Research, 2020, 199, 104595.	5.6	47
54	Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in in in intensive cereal-based system. Soil and Tillage Research, 2020, 202, 104653.	5.6	38

#	Article	IF	CITATIONS
55	Fields on fire: Alternatives to crop residue burning in India. Science, 2019, 365, 536-538.	12.6	121
56	Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. Archives of Agronomy and Soil Science, 2019, 65, 1370-1386.	2.6	32
57	Assessing climate adaptation options for cereal-based systems in the eastern Indo-Gangetic Plains, South Asia. Journal of Agricultural Science, 2019, 157, 189-210.	1.3	10
58	Carbon mineralization in soil as influenced by crop residue type and placement in an <i>Alfisols</i> of Northwest India. Carbon Management, 2019, 10, 37-50.	2.4	32
59	Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil and Tillage Research, 2019, 192, 151-163.	5.6	27
60	Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena, 2019, 181, 104059.	5.0	73
61	Effects of crop residue retention on soil carbon pools after 6Âyears of rice–wheat cropping system. Environmental Earth Sciences, 2019, 78, 1.	2.7	36
62	Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil and Tillage Research, 2019, 190, 128-138.	5.6	102
63	Dependence of temperature sensitivity of soil organic carbon decomposition on nutrient management options under conservation agriculture in a sub-tropical Inceptisol. Soil and Tillage Research, 2019, 190, 50-60.	5.6	33
64	Effect of conservation agriculture on stratification of soil organic matter under cereal-based cropping systems. Archives of Agronomy and Soil Science, 2019, 65, 2013-2028.	2.6	27
65	Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agricultural Water Management, 2019, 219, 19-26.	5.6	79
66	Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. Field Crops Research, 2019, 236, 96-110.	5.1	34
67	Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management, 2019, 216, 273-283.	5.6	71
68	Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Scientific Reports, 2019, 9, 17929.	3.3	39
69	Ten years of conservation agriculture in a rice–maize rotation of Eastern Gangetic Plains of India: Yield trends, water productivity and economic profitability. Field Crops Research, 2019, 232, 1-10.	5.1	53
70	Business models of SMEs as a mechanism for scaling climate smart technologies: The case of Punjab, India. Journal of Cleaner Production, 2019, 210, 1109-1119.	9.3	40
71	Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indoâ€Gangetic Plains of India. Soil Use and Management, 2019, 35, 303-313.	4.9	16
72	Cost-effective opportunities for climate change mitigation in Indian agriculture. Science of the Total Environment, 2019, 655, 1342-1354.	8.0	89

#	Article	IF	CITATIONS
73	Agricultural sustainability under emerging climatic variability: The role of climate-smart agriculture and relevant policies in India. International Journal of Innovation and Sustainable Development, 2019, 1, 1.	0.4	6
74	Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Applied Soil Ecology, 2018, 126, 189-198.	4.3	68
75	Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. International Journal of Climate Change Strategies and Management, 2018, 10, 407-427.	2.9	95
76	Conservation agriculture and precision nutrient management practices in maize-wheat system: Effects on crop and water productivity and economic profitability. Field Crops Research, 2018, 222, 111-120.	5.1	47
77	Factors determining the adoption of laser land leveling in the irrigated rice–wheat system in Haryana, India. Journal of Crop Improvement, 2018, 32, 477-492.	1.7	19
78	Heat stress and yield stability of wheat genotypes under different sowing dates across agro-ecosystems in India. Field Crops Research, 2018, 218, 33-50.	5.1	19
79	Soil Processes and Wheat Cropping Under Emerging Climate Change Scenarios in South Asia. Advances in Agronomy, 2018, 148, 111-171.	5.2	33
80	Evaluating alternatives to rice-wheat system in western Indo-Gangetic Plains: Crop yields, water productivity and economic profitability. Field Crops Research, 2018, 218, 1-10.	5.1	50
81	Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crops Research, 2018, 224, 1-12.	5.1	58
82	Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agricultural Water Management, 2018, 202, 122-133.	5.6	48
83	Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 2018, 64, 531-545.	2.6	164
84	Climate smart agriculture, farm household typologies and food security. Agricultural Systems, 2018, 159, 57-68.	6.1	99
85	Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India. Energy, 2018, 142, 289-302.	8.8	36
86	Long-Term Conservation Agriculture and Intensified Cropping Systems: Effects on Growth, Yield, Water, and Energy-use Efficiency of Maize in Northwestern India. Pedosphere, 2018, 28, 952-963.	4.0	24
87	Burning issues of paddy residue management in north-west states of India. Renewable and Sustainable Energy Reviews, 2018, 81, 693-706.	16.4	217
88	Conservation agriculture effects on crop and water productivity, profitability and soil organic carbon accumulation under a maize-wheat cropping system in the North-western Indo-Gangetic Plains. Field Crops Research, 2018, 215, 222-231.	5.1	76
89	Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma, 2018, 313, 193-204.	5.1	124
90	Soil biological properties and fungal diversity under conservation agriculture in Indo-Gangetic Plains of India. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	10

#	Article	IF	CITATIONS
91	Changes in soil biochemical indicators at different wheat growth stages under conservation-based sustainable intensification of rice-wheat system. Journal of Integrative Agriculture, 2018, 17, 1871-1880.	3.5	16
92	Soil bacterial diversity under conservation agriculture-based cereal systems in Indo-Gangetic Plains. 3 Biotech, 2018, 8, 304.	2.2	23
93	Changes in carbon pools and biological activities of a sandy loam soil under mediumâ€ŧerm conservation agriculture and diversified cropping systems. European Journal of Soil Science, 2018, 69, 902-912.	3.9	43
94	Soil biochemical changes at different wheat growth stages in response to conservation agriculture practices in a rice-wheat system of north-western India. Soil Research, 2018, 56, 91.	1.1	49
95	Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Science of the Total Environment, 2018, 640-641, 1382-1392.	8.0	52
96	RELAY SOWING OF WHEAT IN THE COTTON–WHEAT CROPPING SYSTEM IN NORTH-WEST INDIA: TECHNICAL AND ECONOMIC ASPECTS. Experimental Agriculture, 2017, 53, 539-552.	0.9	6
97	Soil organic carbon changes after seven years of conservation agriculture in a rice–wheat system of the eastern Indoâ€Gangetic Plains. Soil Use and Management, 2017, 33, 81-89.	4.9	63
98	Gender and inorganic nitrogen: what are the implications of moving towards a more balanced use of nitrogen fertilizer in the tropics?. International Journal of Agricultural Sustainability, 2017, 15, 136-152.	3.5	33
99	Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. Energy, 2017, 119, 245-256.	8.8	80
100	A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Scientific Reports, 2017, 7, 9342.	3.3	94
101	Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem. Agricultural Water Management, 2017, 192, 306-319.	5.6	53
102	Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India. Sustainability, 2017, 9, 1044.	3.2	27
103	Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 2017, , .	0.1	31
104	Conservation Agriculture and Soil Quality– An Overview. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 707-734.	0.1	10
105	Predicting Yield and Stability Analysis of Wheat under Different Crop Management Systems across Agro-Ecosystems in India. American Journal of Plant Sciences, 2017, 08, 1977-2012.	0.8	10
106	Impact of legume intensified crop rotations and tillage practices on maize productivity vis-Ã-vis C and N dynamics of a sandy loam soil in north-western Indo-Gangetic Plains of India. Legume Research, 2017, , .	0.1	2
107	Conservation agriculture in irrigated intensive maize-based systems of north-western India: Effects on crop yields, water productivity and economic profitability. Field Crops Research, 2016, 193, 104-116.	5.1	109
108	Effects of conservation agriculture on crop productivity and water-use efficiency under an irrigated pigeonpea–wheat cropping system in the western Indo-Gangetic Plains. Journal of Agricultural Science, 2016, 154, 1327-1342.	1.3	33

#	Article	IF	CITATIONS
109	Yield Estimation of Food and Non-food Crops in Smallholder Production Systems. , 2016, , 163-174.		22
110	Climate Change and Agriculture: Adaptation Strategies and Mitigation Opportunities for Food Security in South Asia and Latin America. Advances in Agronomy, 2016, 137, 127-235.	5.2	108
111	Evaluation of tillage and crop establishment methods integrated with relay seeding of wheat and mungbean for sustainable intensification of cotton-wheat system in South Asia. Field Crops Research, 2016, 199, 31-41.	5.1	12
112	Conservation agriculture-based wheat production better copes with extreme climate events than conventional tillage-based systems: A case of untimely excess rainfall in Haryana, India. Agriculture, Ecosystems and Environment, 2016, 233, 325-335.	5.3	67
113	Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil and Tillage Research, 2016, 161, 116-128.	5.6	127
114	Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?. Agriculture, Ecosystems and Environment, 2016, 220, 164-174.	5.3	282
115	Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains. Crop Protection, 2016, 81, 168-176.	2.1	52
116	Soil physical properties, yield trends and economics after five years of conservation agriculture based rice-maize system in north-western India. Soil and Tillage Research, 2016, 155, 133-148.	5.6	109
117	ON-FARM ECONOMIC AND ENVIRONMENTAL IMPACT OF ZERO-TILLAGE WHEAT: A CASE OF NORTH-WEST INDIA. Experimental Agriculture, 2015, 51, 1-16.	0.9	93
118	Development and evaluation of the Turbo Happy Seeder for sowing wheat into heavy rice residues in NW India. Field Crops Research, 2015, 184, 201-212.	5.1	134
119	Management influence on maize–wheat system performance, water productivity and soil biology. Soil Use and Management, 2015, 31, 534-543.	4.9	47
120	Nitrogen management for zero till wheat with surface retention of rice residues in north-west India. Field Crops Research, 2015, 184, 183-191.	5.1	43
121	Reply to 'No-till agriculture and climate change mitigation'. Nature Climate Change, 2015, 5, 489-489.	18.8	9
122	Tillage, residue and nitrogen management effects on methane and nitrous oxide emission from rice–wheat system of Indian Northwest Indo-Gangetic Plains. Journal of Integrative Environmental Sciences, 2015, 12, 31-46.	2.5	38
123	Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precision Agriculture, 2015, 16, 455-475.	6.0	52
124	Impacts of laser land leveling in rice–wheat systems of the north–western indo-gangetic plains of India. Food Security, 2015, 7, 725-738.	5.3	82
125	Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. Journal of Integrative Agriculture, 2015, 14, 1524-1533.	3.5	110
126	Farmers, food and climate change: ensuring community-based adaptation is mainstreamed into agricultural programmes. Climate and Development, 2014, 6, 318-328.	3.9	63

#	Article	IF	CITATIONS
127	Nutrient Management and Use Efficiency in Wheat Systems of South Asia. Advances in Agronomy, 2014, 125, 171-259.	5.2	48
128	Understanding biophysical and socio-economic determinants of maize (<i>Zea mays</i> L.) yield variability in eastern India. Njas - Wageningen Journal of Life Sciences, 2014, 70-71, 79-93.	7.7	24
129	Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 2014, 4, 678-683.	18.8	594
130	Improving Water Productivity of Wheat-Based Cropping Systems in South Asia for Sustained Productivity. Advances in Agronomy, 2014, , 157-258.	5.2	91
131	Reprint of "Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India― Agriculture, Ecosystems and Environment, 2014, 187, 33-46.	5.3	34
132	Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 2014, 155, 233-244.	5.1	159
133	Conservation agriculture in an irrigated cotton–wheat system of the western Indo-Gangetic Plains: Crop and water productivity and economic profitability. Field Crops Research, 2014, 158, 24-33.	5.1	115
134	Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Research, 2014, 164, 199-210.	5.1	252
135	Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research, 2013, 142, 1-8.	5.1	109
136	Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 2013, 177, 85-97.	5.3	196
137	RELAY PLANTING OF WHEAT IN COTTON: AN INNOVATIVE TECHNOLOGY FOR ENHANCING PRODUCTIVITY AND PROFITABILITY OF WHEAT IN COTTON–WHEAT PRODUCTION SYSTEM OF SOUTH ASIA. Experimental Agriculture, 2013, 49, 19-30.	0.9	19
138	Double no-till and permanent raised beds in maize–wheat rotation of north-western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crops Research, 2013, 149, 291-299.	5.1	145
139	Potassium Fertilization in Rice-Wheat System across Northern India: Crop Performance and Soil Nutrients. Agronomy Journal, 2013, 105, 471-481.	1.8	37
140	Productivity and Sustainability of the Rice–Wheat Cropping System in the Indo-Gangetic Plains of the Indian subcontinent. Advances in Agronomy, 2012, , 315-369.	5.2	287
141	Layering Precision Land Leveling and Furrow Irrigated Raised Bed Planting: Productivity and Input Use Efficiency of Irrigated Bread Wheat in Indo-Gangetic Plains. American Journal of Plant Sciences, 2011, 02, 578-588.	0.8	57
142	Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development, 2011, 31, 589-603.	5.3	87
143	Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant and Soil, 2010, 335, 65-82.	3.7	162
144	Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Research, 2010, 116, 260-267.	5.1	228

#	Article	IF	CITATIONS
145	Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 2009, 105, 112-121.	5.6	236
146	Estimation of Aquifer Parameters by Least-Squares Method under Linear Flow Conditions in Fractured Rocks. Hydrology Research, 1995, 26, 111-124.	2.7	2
147	Long term effect of legume intensified crop rotations and tillage practices on productivity and profitability of maize vis-a-vis soil fertility in North-Western Indo-Gangetic Plains of India. Legume Research, 0, , .	0.1	4