Denis N Silachev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459429/publications.pdf

Version: 2024-02-01

55 2,072 18 44 papers citations h-index g-index

55 55 55 55 3665

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	The potential of extracellular microvesicles of mesenchymal stromal cells in obstetrics. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 7523-7525.	0.7	5
2	Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation. Acta Neuropathologica Communications, 2022, 10, 9.	2.4	16
3	Chlorin Endogenous to the North Pacific Brittle Star Ophiura sarsii for Photodynamic Therapy Applications in Breast Cancer and Glioblastoma Models. Biomedicines, 2022, 10, 134.	1.4	3
4	Is the Mitochondrial Membrane Potential ($\hat{a}^{\uparrow}\hat{l}^{:}$) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the $\hat{a}^{\uparrow}\hat{l}^{:}$ Probe, Rhodamine 123. International Journal of Molecular Sciences, 2022, 23, 482.	1.8	15
5	Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS Journal, 2022, 289, 5697-5713.	2.2	4
6	Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells, 2022, 11, 1409.	1.8	17
7	Protective Effects of PGC-1α Activators on Ischemic Stroke in a Rat Model of Photochemically Induced Thrombosis. Brain Sciences, 2021, 11, 325.	1.1	3
8	Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells, 2021, 10, 1273.	1.8	19
9	Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sciences, 2021, 11, 889.	1.1	11
10	Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sciences, 2021, 11, 1050.	1.1	16
11	Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia. Frontiers in Cell and Developmental Biology, 2020, 8, 823.	1.8	8
12	New Aspects of Biodistribution of Perfluorocarbon Emulsions in Rats: Thymus Imaging. Applied Magnetic Resonance, 2020, 51, 1625-1635.	0.6	5
13	Preservation of Mesenchymal Stem Cell-Derived Extracellular Vesicles after Abdominal Delivery in the Experiment. Bulletin of Experimental Biology and Medicine, 2020, 169, 122-129.	0.3	5
14	A Combination of Kidney Ischemia and Injection of Isolated Mitochondria Leads to Activation of Inflammation and Increase in Mortality Rate in Rats. Bulletin of Experimental Biology and Medicine, 2020, 169, 213-217.	0.3	4
15	Nonphosphorylating Oxidation in Mitochondria and Related Processes. Biochemistry (Moscow), 2020, 85, 1570-1577.	0.7	7
16	Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent. Biochemistry (Moscow), 2020, 85, 1578-1590.	0.7	7
17	Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging, 2020, 12, 18693-18715.	1.4	12
18	URINARY EXTRACELLULAR VESICLES AS MARKERS FOR KIDNEY DISEASES. Pediatriia, 2020, 99, 154-163.	0.1	0

#	Article	IF	Citations
19	Mitochondria as a Source and a Target for Uremic Toxins. International Journal of Molecular Sciences, 2019, 20, 3094.	1.8	39
20	Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 2019, 8, 258.	1.8	91
21	Rapamycin Is Not Protective against Ischemic and Cisplatin-Induced Kidney Injury. Biochemistry (Moscow), 2019, 84, 1502-1512.	0.7	9
22	Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. International Journal of Molecular Sciences, 2019, 20, 6326.	1.8	33
23	Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochemical Research, 2019, 44, 2261-2272.	1.6	21
24	Therapeutic effect of human umbilical cord-derived multipotent mesenchymal stromal cells in a patient with Crigler–Najjar syndrome type I. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2019, 64, 26-34.	0.1	0
25	Functional Significance of the Mitochondrial Membrane Potential. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 20-26.	0.3	28
26	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	1.1	1,161
27	FP237EFFECTS OF THE AGE ON ACUTE KIDNEY INJURY IN NEONATAL AND ADULT RATS. Nephrology Dialysis Transplantation, 2018, 33, i109-i109.	0.4	0
28	FP037INFLUENCE OF INFLAMMATION ON MMSC:ANTI-INFLAMMATORY PRIMING OR SWITCHING TO INFLAMMATORY PHENOTYPE. Nephrology Dialysis Transplantation, 2018, 33, i59-i60.	0.4	0
29	Pregnancy protects the kidney from acute ischemic injury. Scientific Reports, 2018, 8, 14534.	1.6	17
30	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	1.8	20
31	Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle, 2018, 17, 1291-1309.	1.3	21
32	Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bulletin of Experimental Biology and Medicine, 2018, 165, 189-194.	0.3	3
33	CRITICAL FUNCTIONS OF MITOCHONDRIA IN THE ONSET OF PATHOLOGIES. , 2018, , .		0
34	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.2	24
35	Quantification of mitochondrial morphology in situ. Cell and Tissue Biology, 2017, 11, 51-58.	0.2	1
36	The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Scientific Reports, 2017, 7, 44430.	1.6	35

#	Article	IF	Citations
37	Effect of anesthetics on efficiency of remote ischemic preconditioning. Biochemistry (Moscow), 2017, 82, 1006-1016.	0.7	12
38	The Influence of Proinflammatory Factors on the Neuroprotective Efficiency of Multipotent Mesenchymal Stromal Cells in Traumatic Brain Injury. Bulletin of Experimental Biology and Medicine, 2017, 163, 528-534.	0.3	4
39	The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS Journal, 2017, 284, 3069-3078.	2.2	18
40	Changes in number of neurons, astrocytes and microglia in brain after ischemic stroke assessed by immunohistochemistry and immunoblotting. Cell and Tissue Biology, 2016, 10, 445-452.	0.2	2
41	A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2463-2473.	1.1	28
42	The Use of Technetium-99m for Intravital Tracing of Transplanted Multipotent Stromal Cells. Bulletin of Experimental Biology and Medicine, 2016, 162, 153-159.	0.3	6
43	Mitochondria as a target for neuroprotection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 28-36.	0.3	2
44	The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chemico-Biological Interactions, 2016, 256, 64-70.	1.7	32
45	Mechanisms of improving the neuroprotective effects of multipotent stromal cells after Co-culturing with neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 285-292.	0.3	0
46	Specific issues of mitochondrial fragmentation (Fission). Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 278-284.	0.3	0
47	Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke. Chemico-Biological Interactions, 2015, 237, 175-182.	1.7	23
48	Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Translational Medicine, 2015, 4, 1011-1020.	1.6	92
49	Endogenous Methanol Regulates Mammalian Gene Activity. PLoS ONE, 2014, 9, e90239.	1.1	18
50	Assessment of Long-Term Sensorimotor Deficit after Cerebral Ischemia/Hypoxia in Neonatal Rats. Neuroscience and Behavioral Physiology, 2014, 44, 879-887.	0.2	2
51	A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1739-1747.	0.5	34
52	The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung and Circulation, 2014, 23, 897-904.	0.2	40
53	Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3434-3442.	1.1	24
54	The Mitochondria-Targeted Antioxidants and Remote Kidney Preconditioning Ameliorate Brain Damage through Kidney-to-Brain Cross-Talk. PLoS ONE, 2012, 7, e51553.	1.1	43

#	ARTICLE	IF	CITATIONS
55	Comparative Evaluation of Two Methods for Studies of Experimental Focal Ischemia: Magnetic Resonance Tomography and Triphenyltetrazoleum Detection of Brain Injuries. Bulletin of Experimental Biology and Medicine, 2009, 147, 269-272.	0.3	32