Yuko Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459021/publications.pdf

Version: 2024-02-01

759233 713466 25 446 12 21 h-index citations g-index papers 26 26 26 410 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition. Construction and Building Materials, 2017, 134, 703-712.	7.2	72
2	Effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete. Construction and Building Materials, 2020, 236, 117462.	7.2	45
3	Effect of internal water content on carbonation progress in cement-treated sand and effect of carbonation on compressive strength. Cement and Concrete Composites, 2018, 85, 9-21.	10.7	43
4	Effect of silica fume on efflorescence formation and alkali leaching of alkali-activated slag. Journal of Cleaner Production, 2021, 315, 128210.	9.3	41
5	Effects of chloride ions on the durability and mechanical properties of sea sand concrete incorporating supplementary cementitious materials under an accelerated carbonation condition. Construction and Building Materials, 2021, 274, 122016.	7.2	35
6	Internal curing of Class-F fly-ash concrete using high-volume roof-tile waste aggregate. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	32
7	A study on pozzolanic reaction of fly ash cement paste activated by an injection of alkali solution. Construction and Building Materials, 2015, 94, 28-34.	7.2	30
8	Contribution of fly ash to the strength development of mortars cured at different temperatures. Construction and Building Materials, 2021, 276, 122191.	7.2	19
9	Effects of Shirasu natural pozzolan and limestone powder on the strength and aggressive chemical resistance of concrete. Construction and Building Materials, 2020, 239, 117679.	7.2	18
10	Influence of coarse aggregate shape on optimum fine to total aggregate ratio using a virtual voids-ratio diagram in concrete compaction. Cement and Concrete Composites, 2020, 106, 103463.	10.7	16
11	Effect of Sodium Sulfate Activator on Compressive Strength and Hydration of Fly-Ash Cement Pastes. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	14
12	Effect of internal alkali activation on pozzolanic reaction of low-calcium fly ash cement paste. Materials and Structures/Materiaux Et Constructions, 2016, 49, 3039-3053.	3.1	13
13	Long-term pozzolanic reaction of fly ash in hardened cement-based paste internally activated by natural injection of saturated Ca(OH)2 solution. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	13
14	Alkali leaching and mechanical performance of epoxy resin-reinforced geopolymer composite. Materials Letters, 2021, 304, 130663.	2.6	11
15	Evaluation of the cementing efficiency factor of low-calcium fly ash for the chloride-penetration resistance of concretes: A simple approach. Construction and Building Materials, 2021, 270, 121858.	7.2	9
16	Penetration of Moisture, CO ₂ , and Cl Ions in Concrete after Exposure to High Temperature. Journal of Advanced Concrete Technology, 2019, 17, 1-15.	1.8	8
17	Difference in Strength Development between Cement-Treated Sand and Mortar with Various Cement Types and Curing Temperatures. Materials, 2020, 13, 4999.	2.9	8
18	Shear Strength of Reinforced Limestone Aggregate Concrete Beams. ACI Structural Journal, 2017, 114, .	0.2	6

#	Article	IF	CITATIONS
19	INFLUENCE OF CURING TEMPERATURE CHANGE TO PERFORMANCE OF FLY ASH AS CEMENTITIOUS MATERIAL. Journal of Japan Society of Civil Engineers Ser E2 (Materials and Concrete Structures), 2011, 67, 482-492.	0.2	3
20	Effect of Internal Activation Using Porous Ceramic Aggregate on Hardness and Pore Structure of Fly Ash Cement Paste. Key Engineering Materials, 0, 711, 95-102.	0.4	3
21	Effects of chloride ion in sea sand on properties of fresh and hardened concrete incorporating supplementary cementitious materials. Journal of Sustainable Cement-Based Materials, 0, , 1-20.	3.1	2
22	EFFECT OF POROUS CERAMIC WASTE AGGREGATE ON DURABILITY OF STEAM CURED FLY ASH CONCRETE. Cement Science and Concrete Technology, 2014, 68, 337-344.	0.1	1
23	CAPTURING IN CEMENT PASTE OF HEAVY METAL ADDED WITH DIFFERENT METHODS. Cement Science and Concrete Technology, 2014, 68, 375-381.	0.1	1
24	Effect of Lime Stone Aggregate on Drying Shrinkage and Shear Strength of an RC Beam. , 2015, , .		0
25	Effects of Amounts and Moisture States of Clay-Brick Waste as Coarse Aggregate on Slump and Compressive Strength of Concrete. Lecture Notes in Civil Engineering, 2020, , 507-512.	0.4	0