
Luis Cisneros-Zevallos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological maturity and wound-based orchard practices influence the antioxidant content and metabolic activity of two species of açai fruit at harvest and during storage. Food Chemistry, 2022, 382, 132279.	4.2	1
2	Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods, 2022, 11, 653.	1.9	30
3	Reduction of Bacterial Enteric Pathogens and Hygiene Indicator Bacteria on Tomato Skin Surfaces by a Polymeric Nanoparticle-Loaded Plant-Derived Antimicrobial. Microorganisms, 2022, 10, 448.	1.6	0
4	Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. Plants, 2022, 11, 1271.	1.6	5
5	Facile, fluorine-free fabrication of bacterial antifouling titanium alloy Ti6Al4V surfaces for surgically implanted devices. Surface and Coatings Technology, 2022, 443, 128580.	2.2	5
6	Novel Biopesticides Based on Nanoencapsulation of Azadirachtin with Whey Protein to Control Fall Armyworm. Journal of Agricultural and Food Chemistry, 2022, 70, 7900-7910.	2.4	12
7	The power of plants: how fruit and vegetables work as source of nutraceuticals and supplements. International Journal of Food Sciences and Nutrition, 2021, 72, 660-664.	1.3	24
8	Designing Next-Generation Functional Food and Beverages: Combining Nonthermal Processing Technologies and Postharvest Abiotic Stresses. Food Engineering Reviews, 2021, 13, 592-600.	3.1	24
9	Physiological role of reactive oxygen species, ethylene, and jasmonic acid on UV light induced phenolic biosynthesis in wounded carrot tissue. Postharvest Biology and Technology, 2021, 172, 111388.	2.9	30
10	Antimicrobial-Loaded Polymeric Micelles Inhibit Enteric Bacterial Pathogens on Spinach Leaf Surfaces During Multiple Simulated Pathogen Contamination Events. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	3
11	Nanotoxicity of 2D Molybdenum Disulfide, MoS2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. Nanomaterials, 2021, 11, 1453.	1.9	10
12	Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and crossâ€contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3093-3134.	5.9	54
13	Assessment of Concentrated Liquid Coffee Acceptance during Storage: Sensory and Physicochemical Perspective. Molecules, 2021, 26, 3545.	1.7	4
14	Development of durable and superhydrophobic nanodiamond coating on aluminum surfaces for improved hygiene of food contact surfaces. Journal of Food Engineering, 2021, 298, 110487.	2.7	22
15	Fabrication of Robust Superhydrophobic Coatings onto High-Density Polyethylene Food Contact Surfaces for Enhanced Microbiological Food Safety. ACS Food Science & Technology, 2021, 1, 1180-1189.	1.3	5
16	Bacterial Antifouling Characteristics of Helicene—Graphene Films. Nanomaterials, 2021, 11, 89.	1.9	4
17	Encapsulated Plant-Derived Antimicrobial Reduces Enteric Bacterial Pathogens on Melon Surfaces during Differing Contamination and Sanitization Treatment Scenarios. Applied Microbiology, 2021, 1, 460-470.	0.7	1
18	Chemical Genetics Applied to Elucidate the Physiological Role of Stress-Signaling Molecules on the Wound-Induced Accumulation of Glucosinolates in Broccoli. Plants, 2021, 10, 2660.	1.6	5

#	Article	IF	CITATIONS
19	Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chemistry, 2020, 307, 125551.	4.2	25
20	Controlled Abiotic Stresses Revisited: From Homeostasis through Hormesis to Extreme Stresses and the Impact on Nutraceuticals and Quality during Pre- and Postharvest Applications in Horticultural Crops. Journal of Agricultural and Food Chemistry, 2020, 68, 11877-11879.	2.4	57
21	Goat's Milk Intake Prevents Obesity, Hepatic Steatosis and Insulin Resistance in Mice Fed A High-Fat Diet by Reducing Inflammatory Markers and Increasing Energy Expenditure and Mitochondrial Content in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 5530.	1.8	20
22	Bioactive Phenolics and Polyphenols: Current Advances and Future Trends. International Journal of Molecular Sciences, 2020, 21, 6142.	1.8	6
23	Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food and Bioprocess Technology, 2020, 13, 1717-1727.	2.6	14
24	UVCÂlight modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 2020, 10, 21972.	1.6	29
25	Sanitizing after freshâ€cutting carrots reduces the woundâ€induced accumulation of phenolic antioxidants compared to sanitizing before freshâ€cutting. Journal of the Science of Food and Agriculture, 2020, 100, 4995-4998.	1.7	13
26	Wounding and UVB light synergistically induce the postharvest biosynthesis of indicaxanthin and betanin in red prickly pears. Postharvest Biology and Technology, 2020, 167, 111247.	2.9	10
27	Ellagic Acid and Urolithins A and B Differentially Regulate Fat Accumulation and Inflammation in 3T3-L1 Adipocytes While Not Affecting Adipogenesis and Insulin Sensitivity. International Journal of Molecular Sciences, 2020, 21, 2086.	1.8	24
28	Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 3108.	1.8	20
29	Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS Applied Materials & amp; Interfaces, 2020, 12, 21311-21321.	4.0	67
30	Postharvest Wounding Stress in Horticultural Crops as a Tool for Designing Novel Functional Foods and Beverages with Enhanced Nutraceutical Content: Carrot Juice as a Case Study. Journal of Food Science, 2019, 84, 1151-1161.	1.5	30
31	A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends in Food Science and Technology, 2019, 88, 179-193.	7.8	41
32	Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears (Opuntia ficus-indica cv. Rojo Vigor). International Journal of Molecular Sciences, 2019, 20, 5327.	1.8	30
33	Solving the controversy of healthier organic fruit: Leaf wounding triggers distant gene expression response of polyphenol biosynthesis in strawberry fruit (Fragaria x ananassa). Scientific Reports, 2019, 9, 19239.	1.6	13
34	Modification of aluminum surfaces with superhydrophobic nanotextures for enhanced food safety and hygiene. Food Control, 2019, 96, 463-469.	2.8	18
35	Characterization of Starch from Two Andean Potatoes: Ccompis (<i>Solanum tuberosum spp.) Tj ETQq1 1 0.784</i>	4314.rgBT 1.1	/Oyerlock 10

The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Scientific Reports, 2018, 8, 17247.

1.6 124

#	Article	IF	CITATIONS
37	Geraniol-Loaded Polymeric Nanoparticles Inhibit Enteric Pathogens on Spinach during Posttreatment Refrigerated and Temperature Abuse Storage. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	11
38	Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biology and Technology, 2018, 145, 172-182.	2.9	36
39	Using a Functional Carrot Powder Ingredient to Produce Sausages with High Levels of Nutraceuticals. Journal of Food Science, 2018, 83, 2351-2361.	1.5	23
40	Postharvest behavior of camu-camu fruits based on harvesting time and nutraceutical properties. Scientia Horticulturae, 2017, 217, 276-284.	1.7	10
41	Corrigendum to' Postharvest behavior of camu-camu fruits based on harvesting time and nutraceutical properties' [Scientia Horticulturae, volume 217(2017), pages 276-284]. Scientia Horticulturae, 2017, 224, e1.	1.7	0
42	Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science and Technology, 2017, 60, 80-87.	7.8	51
43	UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules, 2017, 22, 1065.	1.7	79
44	UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. International Journal of Molecular Sciences, 2017, 18, 2330.	1.8	114
45	Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules, 2017, 22, 358.	1.7	439
46	Stability of Bioactive Compounds in Broccoli as Affected by Cutting Styles and Storage Time. Molecules, 2017, 22, 636.	1.7	52
47	Recent Advances in Plant Phenolics. Molecules, 2017, 22, 1249.	1.7	9
48	UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding. Molecules, 2017, 22, 668.	1.7	83
49	Primary recovery of bioactive compounds from stressed carrot tissue using aqueous twoâ€phase systems strategies. Journal of Chemical Technology and Biotechnology, 2016, 91, 144-154.	1.6	40
50	Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones. Frontiers in Plant Science, 2016, 7, 45.	1.7	76
51	Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment. Nanotechnology, 2016, 27, 085705.	1.3	18
52	Surface modification of food processing and handling gloves for enhanced food safety and hygiene. Journal of Food Engineering, 2016, 187, 82-91.	2.7	21
53	Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia) Tj ETQq1 1 264.7 macrophage cells. Journal of Ethnopharmacology, 2016, 187, 302-312.	0.784314 2.0	rgBT /Overlo 76
54	Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biology and Technology, 2016, 119, 18-26.	2.9	57

#	Article	IF	CITATIONS
55	Peel removal improves quality without antioxidant loss, through wound-induced phenolic biosynthesis in shredded carrot. Postharvest Biology and Technology, 2016, 120, 232-239.	2.9	26
56	Application of wounding stress to produce a nutraceutical-rich carrot powder ingredient and its incorporation to nixtamalized corn flour tortillas. Journal of Functional Foods, 2016, 27, 655-666.	1.6	32
57	Protective Role of Flavonoids and Lipophilic Compounds from <i>Jatropha platyphylla</i> on the Suppression of Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. Journal of Agricultural and Food Chemistry, 2016, 64, 1899-1909.	2.4	27
58	Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 2015, 6, 837.	1.7	112
59	Hydrophobically-modified silica aerogels: Novel food-contact surfaces with bacterial anti-adhesion properties. Food Control, 2015, 52, 132-141.	2.8	27
60	Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Scientific Reports, 2015, 5, 8608.	1.6	182
61	Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves. ACS Applied Materials & Interfaces, 2015, 7, 19274-19281.	4.0	53
62	Priming with nano-aerosolized water and sequential dip-washing with hydrogen peroxide: An efficient sanitization method to inactivate Salmonella Typhimurium LT2 on spinach. Journal of Food Engineering, 2015, 161, 8-15.	2.7	15
63	Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chemistry, 2015, 174, 188-196.	4.2	68
64	Polyphenolics from peach (Prunus persica var. Rich Lady) inhibit tumor growth and metastasis of MDA-MB-435 breast cancer cells in vivo. Journal of Nutritional Biochemistry, 2014, 25, 796-800.	1.9	50
65	Effect of Exogenous Amylolytic Enzymes on the Accumulation of Chlorogenic Acid Isomers in Wounded Potato Tubers. Journal of Agricultural and Food Chemistry, 2014, 62, 7671-7675.	2.4	34
66	Plants as biofactories: Stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time. Industrial Crops and Products, 2014, 62, 61-66.	2.5	66
67	Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chemistry, 2014, 164, 363-370.	4.2	58
68	Preventing adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium LT2 on tomato surfaces via ultrathin polyethylene glycol film. International Journal of Food Microbiology, 2014, 185, 73-81.	2.1	25
69	Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 2013, 119, 425-432.	2.7	69
70	The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 2013, 5, 5990.	1.3	467
71	Plants as Biofactories: Glyphosate-Induced Production of Shikimic Acid and Phenolic Antioxidants in Wounded Carrot Tissue. Journal of Agricultural and Food Chemistry, 2012, 60, 11378-11386.	2.4	61
72	An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds. Agriculture (Switzerland), 2012, 2, 259-271.	1.4	92

#	Article	IF	CITATIONS
73	Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chemistry, 2012, 134, 615-624.	4.2	122
74	Plants as Biofactories: Physiological Role of Reactive Oxygen Species on the Accumulation of Phenolic Antioxidants in Carrot Tissue under Wounding and Hyperoxia Stress. Journal of Agricultural and Food Chemistry, 2011, 59, 6583-6593.	2.4	205
75	Postharvest studies beyond fresh market eating quality: Phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence. Postharvest Biology and Technology, 2011, 60, 220-224.	2.9	44
76	The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology and Technology, 2009, 51, 242-249.	2.9	133
77	The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 2009, 115, 1500-1508.	4.2	94
78	Characterization of Starch from two Ecotypes of Andean Achira Roots (Canna edulis). Journal of Agricultural and Food Chemistry, 2009, 57, 7363-7368.	2.4	33
79	Identifying Peach and Plum Polyphenols with Chemopreventive Potential against Estrogen-Independent Breast Cancer Cells. Journal of Agricultural and Food Chemistry, 2009, 57, 5219-5226.	2.4	150
80	Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz & Pavón). Journal of the Science of Food and Agriculture, 2007, 87, 437-446.	1.7	30
81	The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry, 2007, 101, 1254-1262.	4.2	298
82	Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. Journal of the American Society for Horticultural Science, 2007, 132, 334-340.	0.5	115
83	Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 2006, 86, 1481-1488.	1.7	91
84	Dependence of Coating Thickness on Viscosity of Coating Solution Applied to Fruits and Vegetables by Dipping Method. Journal of Food Science, 2003, 68, 503-510.	1.5	127
85	Wounding Stress Increases the Phenolic Content and Antioxidant Capacity of Purple-Flesh Potatoes (Solanum tuberosumL.). Journal of Agricultural and Food Chemistry, 2003, 51, 5296-5300.	2.4	156
86	Screening Methods To Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products. Journal of Agricultural and Food Chemistry, 2003, 51, 6657-6662.	2.4	611
87	Stoichiometric and Kinetic Studies of Phenolic Antioxidants from Andean Purple Corn and Red-Fleshed Sweetpotato. Journal of Agricultural and Food Chemistry, 2003, 51, 3313-3319.	2.4	215
88	Hygroscopic Coatings Control Surface White Discoloration of Peeled (Minimally Processed) Carrots During Storage. Journal of Food Science, 1997, 62, 363-366.	1.5	60
89	Mechanism of Surface White Discoloration of Peeled (Minimally Processed) Carrots During Storage. Journal of Food Science, 1995, 60, 320-323.	1.5	78