
Corinne A Betts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delivery of therapeutic oligonucleotides with cell penetrating peptides. Advanced Drug Delivery Reviews, 2015, 87, 52-67.	6.6	217
2	Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment. Molecular Therapy - Nucleic Acids, 2012, 1, e38.	2.3	177
3	How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the <i>mdx</i> mouse. Human Molecular Genetics, 2015, 24, 4225-4237.	1.4	116
4	Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment. Nucleic Acid Therapeutics, 2019, 29, 1-12.	2.0	70
5	Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Scientific Reports, 2015, 5, 17014.	1.6	50
6	Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Human Molecular Genetics, 2016, 25, 3960-3974.	1.4	50
7	Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice. Scientific Reports, 2015, 5, 8986.	1.6	43
8	Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine, 2018, 31, 226-242.	2.7	37
9	Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 578-593.	2.9	24
10	Cell Penetrating Peptide Delivery of Splice Directing Oligonucleotides as a Treatment for Duchenne Muscular Dystrophy. Current Pharmaceutical Design, 2013, 19, 2948-2962.	0.9	22
11	Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS ONE, 2018, 13, e0198897.	1.1	19
12	Implications for Cardiac Function Following Rescue of the Dystrophic Diaphragm in a Mouse Model of Duchenne Muscular Dystrophy. Scientific Reports, 2015, 5, 11632.	1.6	12
13	Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice. Human Molecular Genetics, 2018, 27, 3582-3597.	1.4	10
14	Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment. Human Molecular Genetics, 2019, 28, 396-406.	1.4	10
15	Optimizing Tissue-Specific Antisense Oligonucleotide–Peptide Conjugates. Methods in Molecular Biology, 2012, 867, 415-435.	0.4	8
16	Dystrophin involvement in peripheral circadian SRF signalling. Life Science Alliance, 2021, 4, e202101014.	1.3	1