Yon Jin Chuah

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7458323/yon-jin-chuah-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	1,202 citations	2 O h-index	34 g-index
40	1,447 ext. citations	6.9	4.65
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
37	Development of annulus fibrosus tissue construct with hydrogel coils containing pre-conditioned mesenchymal stem cell. <i>Journal of Materials Science and Technology</i> , 2021 , 63, 27-34	9.1	2
36	Surface Creasing-Induced Micropatterned GelMA Using Heating-Hydration Fabrication for Effective Vascularization. <i>Tissue Engineering and Regenerative Medicine</i> , 2021 , 18, 759-773	4.5	O
35	Scaffold-Free tissue engineering with aligned bone marrow stromal cell sheets to recapitulate the microstructural and biochemical composition of annulus fibrosus. <i>Acta Biomaterialia</i> , 2020 , 107, 129-13	7 ^{10.8}	8
34	Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair. <i>Biomaterials</i> , 2020 , 235, 119821	15.6	50
33	Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 191, 110995	6	3
32	Full-Scale Osteochondral Regeneration by Sole Graft of Tissue-Engineered Hyaline Cartilage without Co-Engraftment of Subchondral Bone Substitute. <i>Advanced Healthcare Materials</i> , 2020 , 9, e190	1304	6
31	Engineering a multiphasic, integrated graft with a biologically developed cartilage-bone interface for osteochondral defect repair. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6515-6525	7.3	5
30	Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 357-367	7.3	36
29	Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. <i>Materials Science and Engineering C</i> , 2019 , 102, 906-916	8.3	18
28	Bioadhesives for internal medical applications: A review. <i>Acta Biomaterialia</i> , 2018 , 74, 1-16	10.8	83
27	Multidrug-eluting bi-layered microparticle-mesh scaffolds for musculoskeletal tissue regeneration. Journal of Materials Chemistry B, 2018 , 6, 3340-3347	7.3	4
26	Respective Effects of Gelatin-Coated Polydimethylsiloxane (PDMS) Substrates on Self-renewal and Cardiac Differentiation of Induced Pluripotent Stem Cells (iPSCs). <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 4321-4330	5.5	10
25	Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. <i>Biomaterials Science</i> , 2017 , 5, 613-631	7.4	70
24	Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. <i>Biomaterials Science</i> , 2017 , 5, 1156-1173	7.4	21
23	Sustained releasing sponge-like 3D scaffolds for bone tissue engineering applications. <i>Biomedical Materials (Bristol)</i> , 2017 , 13, 015019	3.5	7
22	Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. <i>Nanoscale</i> , 2017 , 9, 14520-14532	7.7	4
21	Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. <i>Biomaterials Science</i> , 2017 , 5, 2056-2067	7.4	11

(2012-2017)

20	Noninvasive Monitoring of Three-Dimensional Chondrogenic Constructs Using Molecular Beacon Nanosensors. <i>Tissue Engineering - Part C: Methods</i> , 2017 , 23, 12-20	2.9	7
19	A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. <i>Biomedical Microdevices</i> , 2016 , 18, 21	3.7	59
18	The effects of gelatin-dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7961-7973	7.3	16
17	Long-Term Tracking Mesenchymal Stem Cell Differentiation with Photostable Fluorescent Nanoparticles. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2016 , 8, 11925-33	9.5	20
16	Bioactive Hydrogels and Their Applications in Regenerative Medicine 2016 , 57-74		1
15	Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration. <i>ACS Applied Materials & Stem Cell Migration</i> (17095-103)	9.5	22
14	Flexible PEGDA-based microneedle patches with detachable PVPIID arrowheads for transdermal drug delivery. <i>RSC Advances</i> , 2015 , 5, 75204-75209	3.7	32
13	The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. <i>Biomaterials Science</i> , 2015 , 3, 383-90	7.4	65
12	Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: an in-vitro study. <i>Experimental Cell Research</i> , 2015 , 331, 176-182	4.2	6
11	A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. <i>Scientific Reports</i> , 2015 , 5, 14768	4.9	25
10	Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation. <i>Acta Biomaterialia</i> , 2015 , 23, 52-62	10.8	39
9	Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. <i>Scientific Reports</i> , 2015 , 5, 18162	4.9	135
8	Protein covalently conjugated SU-8 surface for the enhancement of mesenchymal stem cell adhesion and proliferation. <i>Langmuir</i> , 2014 , 30, 3110-7	4	21
7	Drug-eluting microneedles for self-administered treatment of keloids 2014 , 02, 144-152		17
6	A microfluidic co-culture system to monitor tumor-stromal interactions on a chip. <i>Biomicrofluidics</i> , 2014 , 8, 064118	3.2	32
5	Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures. <i>Chemical Communications</i> , 2013 , 49, 1431-3	5.8	27
4	Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. <i>ACS Applied Materials & District Action (Materials & District & Distri</i>	9.5	138
3	Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. <i>Molecular and Cellular Endocrinology</i> , 2012 , 362, 227-41	4.4	71

Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc. *Spine*, **2011**, 36, 505-11

3.3 39

Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. *Nano Today*, **2011**, 6, 232-239

17.9 92