Yanglong Hou

List of Publications by Citations

Source: https://exaly.com/author-pdf/7458237/yanglong-hou-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 20,219 135 299 h-index g-index citations papers 10.9 23,219 323 7.35 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
299	Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. <i>Advanced Materials</i> , 2010 , 22, 2729-42	24	1129
298	Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. <i>Advanced Materials</i> , 2013 , 25, 4932-7	24	810
297	Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 2007, 129, 8698-9	16.4	776
296	Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. <i>Advanced Materials</i> , 2007 , 19, 3163-3166	24	556
295	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. <i>Chemistry of Materials</i> , 2009 , 21, 1778-1780	9.6	458
294	Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15814-21	16.4	425
293	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. <i>Nano Energy</i> , 2013 , 2, 88-97	17.1	377
292	Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15-32	13	375
291	Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. <i>Advanced Functional Materials</i> , 2014 , 24, 2930-2937	15.6	348
2 90	Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. <i>Advanced Energy Materials</i> , 2016 , 6, 1600374	21.8	294
289	Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. <i>Small</i> , 2013 , 9, 1321-8	11	276
288	A general strategy for synthesizing FePt nanowires and nanorods. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6333-5	16.4	272
287	Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. <i>Chemical Communications</i> , 2008 , 6576-	- 8 5.8	253
286	Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. <i>Chemical Communications</i> , 2011 , 47, 5130-41	5.8	248
285	Controlled synthesis and chemical conversions of FeO nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6329-32	16.4	242
284	Liquid-phase exfoliation, functionalization and applications of graphene. <i>Nanoscale</i> , 2011 , 3, 2118-26	7.7	241
283	Microporous bamboo biochar for lithium-sulfur batteries. <i>Nano Research</i> , 2015 , 8, 129-139	10	238

(2005-2016)

282	Rational Design of Si/SiO2 @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery. <i>Advanced Materials</i> , 2016 , 28, 3167-72	24	234
281	A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li B batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16670-16678	13	219
280	Multifunctional Fe5 C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. <i>Advanced Materials</i> , 2014 , 26, 4114-20	24	209
279	Graphene and its composites with nanoparticles for electrochemical energy applications. <i>Nano Today</i> , 2014 , 9, 668-683	17.9	204
278	Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. <i>Chemistry - A European Journal</i> , 2013 , 19, 5183-90	4.8	204
277	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. <i>Nano Research</i> , 2009 , 2, 706-712	10	198
276	High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19094-8	3.4	197
275	N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted Butting-thinItechnique: A universal synthesis and multifunctional applications. <i>Nano Energy</i> , 2016 , 28, 346-355	17.1	181
274	Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. <i>ACS Nano</i> , 2013 , 7, 10307-18	16.7	178
273	Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1983		176
272	A Versatile Route toward the Electromagnetic Functionalization of Metal-Organic Framework-Derived Three-Dimensional Nanoporous Carbon Composites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 8965-8975	9.5	174
271	Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. <i>Accounts of Chemical Research</i> , 2018 , 51, 404-413	24.3	172
270	Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. <i>ACS Applied Materials & Design Research</i> , 9, 42102-6	4 2 ₹10	172
269	Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. <i>Nanoscale</i> , 2012 , 4, 7326-9	7.7	171
268	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe(3)O(4)) Nanoparticles via Trichloro-s-triazine. <i>Chemistry of Materials</i> , 2006 , 18, 5401-5403	9.6	171
267	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. <i>Nano Energy</i> , 2017 , 42, 334-340	17.1	170
266	Smart Hybridization of TiO2 Nanorods and Fe3O4 Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for High-Rate Lithium Storage. <i>Advanced Functional Materials</i> , 2015 , 25, 3341-3350	15.6	164
265	Size-controlled synthesis of nickel nanoparticles. <i>Applied Surface Science</i> , 2005 , 241, 218-222	6.7	156

264	Monodisperse Au-FeC Janus Nanoparticles: An Attractive Multifunctional Material for Triple-Modal Imaging-Guided Tumor Photothermal Therapy. <i>ACS Nano</i> , 2017 , 11, 9239-9248	16.7	154
263	Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1510		150
262	Integrated Design of MnO @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries. <i>Small</i> , 2017 , 13, 1700087	11	148
261	Nanostructured cathode materials for lithium ulfur batteries: progress, challenges and perspectives. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3014-3038	13	147
260	A Facile Synthesis of SmCo5 Magnets from Core/Shell Co/Sm2O3 Nanoparticles. <i>Advanced Materials</i> , 2007 , 19, 3349-3352	24	143
259	Hierarchically Porous Fe CoSe Binary-Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802745	24	140
258	Octahedral Fe3O4 nanoparticles and their assembled structures. Chemical Communications, 2009, 4378	- 8 08	133
257	Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. <i>Chemical Society Reviews</i> , 2014 , 43, 8098-113	58.5	132
256	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. <i>Chemical Communications</i> , 2010 , 46, 3920-2	5.8	130
255	Electrode Nanostructures in Lithium-Based Batteries. <i>Advanced Science</i> , 2014 , 1, 1400012	13.6	123
254	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502518	21.8	115
253	Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization. <i>Chemistry of Materials</i> , 2005 , 17, 3994-3996	9.6	115
252	Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles. <i>ACS Nano</i> , 2016 , 10, 159-69	16.7	114
251	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogen-Doped Carbon: Superior Potassium-Ion Storage and Insight into Potassium Storage Mechanism. <i>Advanced Materials</i> , 2020 , 32, e2000958	24	113
250	A conductive interwoven bamboo carbon fiber membrane for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9502-9509	13	111
249	Nanoscale Coordination Polymers for Synergistic NO and Chemodynamic Therapy of Liver Cancer. <i>Nano Letters</i> , 2019 , 19, 2731-2738	11.5	110
248	Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. <i>Energy Storage Materials</i> , 2018 , 13, 19-28	19.4	110
247	A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. <i>Nano Energy</i> , 2018 , 48, 510-517	17.1	107

(2018-2015)

246	Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. <i>Small</i> , 2015 , 11, 1423-9	11	105	
245	Stimuli-responsive cancer therapy based on nanoparticles. <i>Chemical Communications</i> , 2014 , 50, 11614-3	30 5.8	105	
244	Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2176-80	16.4	105	
243	Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. <i>Journal of Hazardous Materials</i> , 2012 , 227-228, 461-8	12.8	103	
242	Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. <i>Nature Communications</i> , 2019 , 10, 4418	17.4	101	
241	Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. <i>Nano Energy</i> , 2017 , 41, 426-433	17.1	100	
240	Efficient bacterial capture with amino acid modified magnetic nanoparticles. <i>Water Research</i> , 2014 , 50, 124-34	12.5	100	
239	Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. <i>Nanoscale</i> , 2015 , 7, 7189-96	7.7	99	
238	Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. <i>Advanced Energy Materials</i> , 2020 , 10, 1900375	21.8	97	
237	Sulfur Hosts against the Shuttle Effect. Small Methods, 2018 , 2, 1700345	12.8	95	
236	Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage. <i>Nano Energy</i> , 2016 , 30, 347-354	17.1	94	
235	Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. <i>Chinese Physics B</i> , 2014 , 23, 037503	1.2	93	
234	Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. <i>Nano Research</i> , 2013 , 6, 1-9	10	93	
233	Enhanced Polysulfide Regulation Porous Catalytic VO/VC Heterostructures Derived from Metal-Organic Frameworks toward High-Performance Li-S Batteries. <i>ACS Nano</i> , 2020 , 14, 8495-8507	16.7	91	
232	Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. <i>Nanoscale</i> , 2014 , 6, 1049-55	7.7	91	
231	SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 571-578	35.4	90	
230	Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. <i>Nano Energy</i> , 2015 , 11, 267-276	17.1	89	
229	Ultrathin MXene Nanosheets Decorated with TiO Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries. <i>Small</i> , 2018 , 14, e1802443	11	89	

228	Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. <i>Nano Research</i> , 2015 , 8, 3725-3736	10	86
227	3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance. <i>Advanced Functional Materials</i> , 2019 , 29, 1808468	15.6	85
226	Transition metal chalcogenide anodes for sodium storage. <i>Materials Today</i> , 2020 , 35, 131-167	21.8	85
225	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive FeC@FeO Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 10002-100)1 ¹ 4 ^{6.7}	82
224	Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 805-813	13	82
223	Single-crystalline Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6888	13	82
222	Reversible Response of Luminescent Terbium(III)-Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6786-6790	16.4	81
221	Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@FeO by selectively adsorbed halide ions. <i>Chemical Science</i> , 2017 , 8, 473-481	9.4	80
220	SmCo5He nanocomposites synthesized from reductive annealing of oxide nanoparticles. <i>Applied Physics Letters</i> , 2007 , 91, 153117	3.4	80
219	Nitrogen-Doped Carbon Nanotube Aerogels for High-Performance ORR Catalysts. <i>Small</i> , 2015 , 11, 3903	3- <u>8</u> 1	78
218	Multi-electron reaction materials for sodium-based batteries. <i>Materials Today</i> , 2018 , 21, 960-973	21.8	77
217	Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. <i>Acta Materialia</i> , 2018 , 145, 331-336	8.4	76
216	Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. <i>Chemical Engineering Journal</i> , 2016 , 297, 304-314	14.7	76
215	Manipulation of Edge-Site FeN2 Moiety on Holey Fe, N Codoped Graphene to Promote the Cycle Stability and Rate Capacity of LiB Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1807485	15.6	76
214	N-Doped Carbon Nanosheet Networks with Favorable Active Sites Triggered by Metal Nanoparticles as Bifunctional Oxygen Electrocatalysts. <i>ACS Energy Letters</i> , 2018 , 3, 2914-2920	20.1	76
213	Turning on Zn 4s Electrons in a N -Zn-B Configuration to Stimulate Remarkable ORR Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 181-185	16.4	75
212	Preparation and Characterization of Monodisperse FePd Nanoparticles. <i>Chemistry of Materials</i> , 2004 , 16, 5149-5152	9.6	74
211	One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts. <i>Scientific Reports</i> , 2015 , 5, 12389	4.9	70

(2020-2002)

210	Hydrothermal synthesis and crystal structure of a novel two-dimensional vanadium oxide complex with a 6,14-net sinusoidal ruffling anionic layer: [Ni(phen)(2)V(4)O(11)] (phen = 1,10-phenanthroline). <i>Inorganic Chemistry</i> , 2002 , 41, 140-3	5.1	70	
209	Lightweight and Flexible Cotton Aerogel Composites for Electromagnetic Absorption and Shielding Applications. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900796	6.4	70	
208	Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction. <i>ACS Applied Materials & Applied & Applied Materials & Applied Materials & Applied Materials & Applied Materials & Applied & Applied</i>	9.5	69	
207	Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. <i>Chemical Engineering Journal</i> , 2019 , 358, 962-968	14.7	67	
206	Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1381-9	4.5	66	
205	In situ FeN@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. <i>Nanoscale</i> , 2017 , 9, 8102-8106	7.7	65	
204	Inorganic nanocrystal self-assembly via the inclusion interaction of beta-cyclodextrins: toward 3D spherical magnetite. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 4845-52	3.4	64	
203	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. <i>Nano Energy</i> , 2018 , 50, 273-280	17.1	64	
202	Itinerant ferromagnetic half metallic cobaltiron couples: promising bifunctional electrocatalysts for ORR and OER. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27175-27185	13	63	
201	Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. <i>Angewandte Chemie</i> , 2007 , 119, 6445-6448	3.6	62	
200	Bactericidal mechanisms of AgD/TNBs under both dark and light conditions. <i>Water Research</i> , 2013 , 47, 1837-47	12.5	59	
199	Controlled Growth and Thickness-Dependent Conduction-Type Transition of 2D Ferrimagnetic Cr S Semiconductors. <i>Advanced Materials</i> , 2020 , 32, e1905896	24	58	
198	Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications. <i>ChemNanoMat</i> , 2015 , 1, 376-398	3.5	57	
197	Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 15991-6001	9.5	52	
196	Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6][4H2O@GO particles: a novel chemical approach. <i>Scientific Reports</i> , 2013 , 3, 3542	4.9	52	
195	Solvothermal reduction synthesis and magnetic properties of polymer protected iron and nickel nanocrystals. <i>Journal of Alloys and Compounds</i> , 2004 , 365, 112-116	5.7	52	
194	Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. <i>Nano Energy</i> , 2019 , 55, 37-41	17.1	52	
193	Single-site pyrrolic-nitrogen-doped sp-hybridized carbon materials and their pseudocapacitance. Nature Communications, 2020, 11, 3884	17.4	51	

192	Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer. <i>Science Advances</i> , 2020 , 6,	14.3	50
191	Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. <i>Nano Today</i> , 2019 , 26, 108-122	17.9	49
190	Construction of Synergistic Fe5C2/Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer Tropsch Synthesis Catalyst. <i>ACS Catalysis</i> , 2017 , 7, 5661-5667	13.1	49
189	Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging. <i>Small</i> , 2014 , 10, 1245-9	11	49
188	Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. Journal of Materials Chemistry A, 2017 , 5, 18737-18743	13	48
187	Controllable NdFeB/Fe nanocomposites: chemical synthesis and magnetic properties. <i>Nanoscale</i> , 2014 , 6, 10638-42	7.7	47
186	Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application. <i>Journal of Power Sources</i> , 2015 , 284, 236-244	8.9	47
185	Control over large-volume changes of lithium battery anodes via activel hactive metal alloy embedded in porous carbon. <i>Nano Energy</i> , 2015 , 15, 755-765	17.1	46
184	Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. <i>Nano Research</i> , 2012 , 5, 679-694	10	46
183	Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications. <i>Nanoscale Horizons</i> , 2017 , 2, 81-88	10.8	45
182	Liquid-Phase Templateless Synthesis of Pt-on-Pd0.85Bi0.15 Nanowires and PtPdBi Porous Nanoparticles with Superior Electrocatalytic Activity. <i>Chemistry of Materials</i> , 2013 , 25, 457-465	9.6	45
181	Controlled synthesis and multifunctional properties of FePt-Au heterostructures. <i>Nano Research</i> , 2011 , 4, 836-848	10	44
180	Stable lithium metal anode enabled by lithium metal partial alloying. <i>Nano Energy</i> , 2019 , 65, 103989	17.1	43
179	Light-weight Gadolinium Hydroxide@polypyrrole Rare-Earth Nanocomposites with Tunable and Broadband Electromagnetic Wave Absorption. <i>ACS Applied Materials & Discounty of the Property of the </i>	12760	42
178	Atomic-Scale Structure of Nanocrystals by High-Energy X-ray Diffraction and Atomic Pair Distribution Function Analysis: Study of FexPd100-x(x= 0, 26, 28, 48) Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 714-720	3.8	42
177	Efficient polysulfides anchoring for Li-S batteries: Combined physical adsorption and chemical conversion in V2O5 hollow spheres wrapped in nitrogen-doped graphene network. <i>Chemical Engineering Journal</i> , 2019 , 378, 122189	14.7	41
176	Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. Journal of Materials Chemistry A, 2019 , 7, 11566-11583	13	40
175	Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. <i>Nanoscale</i> , 2013 , 5, 11954-63	7.7	40

(2013-2012)

174	Synthesis and catalysis of oleic acid-coated Fe3O4 nanocrystals for direct coal liquefaction. <i>Catalysis Communications</i> , 2012 , 26, 231-234	3.2	38
173	Ferromagnetic FePt nanowires: solvothermal reduction synthesis and characterization. <i>Small</i> , 2006 , 2, 235-8	11	38
172	Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. <i>Pharmaceutical Research</i> , 2014 , 31, 1377-89	4.5	37
171	A General Strategy for Synthesizing FePt Nanowires and Nanorods. <i>Angewandte Chemie</i> , 2007 , 119, 644	19 . 645	137
170	Towards 3-D Spherical Self-Assembly by Ternary Surfactant Combinations: The Case of Magnetite Nanoparticles. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1169-1173	2.3	37
169	Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 7374	3.7	36
168	Chemical Confinement and Utility of Lithium Polysulfides in Lithium Sulfur Batteries. <i>Small Methods</i> , 2020 , 4, 1900001	12.8	36
167	Noble metal-free catalysts for oxygen reduction reaction. <i>Science China Chemistry</i> , 2017 , 60, 1494-1507	7.9	35
166	Halide Ion-Mediated Synthesis of L1-FePt Nanoparticles with Tunable Magnetic Properties. <i>Nano Letters</i> , 2018 , 18, 7839-7844	11.5	34
165	Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries. <i>Materials Today Energy</i> , 2018 , 10, 108-117	7	34
164	Polyaspartic acid coated manganese oxide nanoparticles for efficient liver MRI. <i>Nanoscale</i> , 2011 , 3, 494.	3 7 57	33
163	Rational design of MXene@TiO nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries. <i>Nanoscale</i> , 2020 , 12, 16678-16684	7.7	33
162	SnS2/Graphene Composites: Excellent Anode Materials for Lithium Ion Battery and Photolysis Catalysts. <i>Science of Advanced Materials</i> , 2013 , 5, 1667-1675	2.3	32
161	FeC nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3993-4000	7.3	31
160	Multifunctional metal rattle-type nanocarriers for MRI-guided photothermal cancer therapy. <i>Molecular Pharmaceutics</i> , 2014 , 11, 3386-94	5.6	31
159	Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. <i>Rare Metals</i> , 2013 , 32, 105-112	5.5	31
158	Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. <i>RSC Advances</i> , 2016 , 6, 92152-92158	3.7	31
157	Controlled synthesis of FePt-Au hybrid nanoparticles triggered by reaction atmosphere and FePt seeds. <i>Nanoscale</i> , 2013 , 5, 9141-9	7.7	30

156	Magnetic nanoparticle-based cancer therapy. Chinese Physics B, 2013, 22, 027506	1.2	30
155	LiFePO(4) nanocrystals: liquid-phase reduction synthesis and their electrochemical performance. <i>ACS Applied Materials & Distriction (Control of the Control of the Control</i>	9.5	30
154	Functional MnO nanoclusters for efficient siRNA delivery. <i>Chemical Communications</i> , 2011 , 47, 12152-4	5.8	30
153	PbS Cubes with Pyramidal Pits: An Example of Etching Growth. Crystal Growth and Design, 2009, 9, 3119)- <u>3.</u> 1 23	30
152	General Approach to Produce Nanostructured Binary Transition Metal Selenides as High-Performance Sodium Ion Battery Anodes. <i>Small</i> , 2019 , 15, e1901995	11	29
151	Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li-S batteries. <i>Nanoscale</i> , 2019 , 11, 7440-7446	7.7	29
150	Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2100186	15.6	29
149	Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. <i>Algal Research</i> , 2016 , 19, 86-95	5	29
148	Facile synthesis of anisotropic single crystalline #e2O3 nanoplates and their facet-dependent catalytic performance. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 576-583	6.8	28
147	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 403-432	29.3	27
146	FePt concave nanocubes with enhanced methanol oxidation activity. CrystEngComm, 2012, 14, 7572	3.3	27
145	Polyanion-type electrode materials for advanced sodium-ion batteries. <i>Materials Today Nano</i> , 2020 , 10, 100072	9.7	26
144	Boosting High-Rate Lithium Storage of V2O5 Nanowires by Self-Assembly on N-Doped Graphene Nanosheets. <i>ChemElectroChem</i> , 2016 , 3, 1730-1736	4.3	26
143	Highly Reversible Li-Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer. <i>Nano-Micro Letters</i> , 2018 , 10, 59	19.5	26
142	Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 8561-8567	13	26
141	A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing. <i>Journal of Power Sources</i> , 2017 , 347, 29-36	8.9	25
140	Ultra-large-scale Synthesis of Fe3O4 Nanoparticles and Their Application for Direct Coal Liquefaction. <i>Industrial & Direct Coal Research</i> , 2014 , 53, 6718-6722	3.9	25
139	Graphene-Based Sulfur Composites for Energy Storage and Conversion in Li-S Batteries. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 13-31	4.9	25

138	Turning on Zn 4s Electrons in a N2-Zn-B2 Configuration to Stimulate Remarkable ORR Performance. <i>Angewandte Chemie</i> , 2021 , 133, 183-187	3.6	24
137	Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene. <i>Science China Materials</i> , 2015 , 58, 114-125	7.1	22
136	Controlled synthesis of CoO/C and Co/C nanocomposites via a molten salt method and their lithium-storage properties. <i>New Journal of Chemistry</i> , 2016 , 40, 2722-2729	3.6	22
135	Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgPSe. <i>Nanoscale</i> , 2018 , 10, 13986-13993	7.7	22
134	Biocompatibility of iron carbide and detection of metals ions signaling proteomic analysis via HPLC/ESI-Orbitrap. <i>Nano Research</i> , 2017 , 10, 1912-1923	10	21
133	Magnetic Structure and Metamagnetic Transitions in the van der Waals Antiferromagnet CrPS. <i>Advanced Materials</i> , 2020 , 32, e2001200	24	21
132	Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic-Magnetic Ag-Fe@FeO Heterostructures with Reduced Cytotoxicity. <i>Advanced Science</i> , 2018 , 5, 1800271	13.6	21
131	Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. <i>Nano Research</i> ,1	10	21
130	Intraorgan Targeting of Gold Conjugates for Precise Liver Cancer Treatment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31458-31468	9.5	20
129	Free-Standing, Foldable V O /Multichannel Carbon Nanofibers Electrode for Flexible Li-Ion Batteries with Ultralong Lifespan. <i>Small</i> , 2020 , 16, e2005302	11	20
128	Achieving High-Energy Full-Cell Lithium-Storage Performance by Coupling High-Capacity VO with Low-Potential NiP Anode. <i>ACS Applied Materials & Discrete Sump</i> , 11, 19-25	9.5	20
127	Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 5154-5160	3.8	19
126	Chemical synthesis of Nd2Fe14B/Fe3B nanocomposites. <i>Nanoscale</i> , 2016 , 8, 12879-82	7.7	19
125	Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations. <i>Advanced Energy Materials</i> , 2021 , 11, 2003823	21.8	19
124	A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 257	7 ⁵ 2582	2 18
123	AuCu tetrapod nanocrystals: highly efficient and metabolizable multimodality imaging-guided NIR-II photothermal agents. <i>Nanoscale Horizons</i> , 2018 , 3, 624-631	10.8	18
122	Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer ropsch Synthesis. CCS Chemistry, 2712-2724	7.2	18
121	Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. <i>Journal of Contaminant Hydrology</i> , 2015 , 181, 153-60	3.9	17

120	Two-Dimensional Magnetic Nanostructures. <i>Trends in Chemistry</i> , 2020 , 2, 163-173	14.8	17
119	Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles. <i>Nano Research</i> , 2018 , 11, 3396-3410	10	17
118	Exchange-coupled fct-FePd/Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles. <i>Chemistry - A European Journal</i> , 2014 , 20, 15197-202	4.8	17
117	Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion. <i>EnergyChem</i> , 2020 , 2, 100036	36.9	16
116	Thin-carbon-layer-enveloped cobaltiron oxide nanocages as a high-efficiency sulfur container for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20604-20611	13	16
115	Anisotropic fluoride nanocrystals modulated by facet-specific passivation and their disordered surfaces. <i>National Science Review</i> , 2020 , 7, 841-848	10.8	15
114	Molten-Salt-Assisted Chemical Vapor Deposition Process for Substitutional Doping of Monolayer MoS and Effectively Altering the Electronic Structure and Phononic Properties. <i>Advanced Science</i> , 2020 , 7, 2001080	13.6	15
113	Long-chain poly-arginine functionalized porous Fe3O4 microspheres as magnetic flocculant for efficient harvesting of oleaginous microalgae. <i>Algal Research</i> , 2017 , 27, 99-108	5	15
112	Phonon scattering and exciton localization: molding exciton flux in two dimensional disorder energy landscape. <i>ELight</i> , 2021 , 1,		15
111	Magnetic Heterostructures: Interface Control to Optimize Magnetic Property and Multifunctionality. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 36811-36822	9.5	15
110	Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2000845	10.1	15
109	Surface modification of magnetic nanoparticles in biomedicine. <i>Chinese Physics B</i> , 2015 , 24, 014704	1.2	14
108	Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 202-8	1.3	14
107	Ostwald Ripening Tailoring Hierarchically Porous Na V (PO) O F Hollow Nanospheres for Superior High-Rate and Ultrastable Sodium Ion Storage. <i>Small</i> , 2020 , 16, e2004925	11	14
106	Micro/Nano NaV(PO)/N-Doped Carbon Composites with a Hierarchical Porous Structure for High-Rate Pouch-Type Sodium-Ion Full-Cell Performance. <i>ACS Applied Materials & Description</i> (13, 8445-8454)	9.5	14
105	Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. <i>Science China Materials</i> , 2020 , 63, 1910-1919	7.1	13
104	An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. <i>Algal Research</i> , 2018 , 31, 173-182	5	13
103	Nanomagnetism: Principles, nanostructures, and biomedical applications. <i>Chinese Physics B</i> , 2014 , 23, 057505	1.2	13

(2020-2020)

102	High-Fidelity Transfer of Chemical Vapor Deposition Grown 2D Transition Metal Dichalcogenides via Substrate Decoupling and Polymer/Small Molecule Composite. <i>ACS Nano</i> , 2020 , 14, 7370-7379	16.7	12
101	One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. <i>Chemical Communications</i> , 2011 , 47, 9095-7	5.8	12
100	Synergistic Polarization Loss of MoS 2 -Based Multiphase Solid Solution for Electromagnetic Wave Absorption. <i>Advanced Functional Materials</i> ,2112294	15.6	12
99	Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 6989-7003	9.5	12
98	Smartly Designed Hierarchical MnO @Fe O /CNT Hybrid Films as Binder-free Anodes for Superior Lithium Storage. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3027-3031	4.5	11
97	Chemical synthesis of magnetic nanocrystals: Recent progress. <i>Chinese Physics B</i> , 2013 , 22, 107503	1.2	11
96	Magnetic nanoparticle-based cancer nanodiagnostics. <i>Chinese Physics B</i> , 2013 , 22, 058702	1.2	11
95	Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries. <i>Research</i> , 2020 , 2020, 57143.	4 9 .8	11
94	Effects of FeO nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. <i>Science of the Total Environment</i> , 2020 , 704, 135286	10.2	11
93	Structure Engineering of 2D Materials toward Magnetism Modulation. <i>Small Structures</i> , 2021 , 2, 210007	78 .7	11
92	Reversible Response of Luminescent Terbium(III)Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. <i>Angewandte Chemie</i> , 2018 , 130, 6902-6906	3.6	10
91	Binary-Metal Selenides: General Approach to Produce Nanostructured Binary Transition Metal Selenides as High-Performance Sodium Ion Battery Anodes (Small 33/2019). <i>Small</i> , 2019 , 15, 1970176	11	10
90	Facile synthesis and dehydrogenation properties of Fe3B nanoalloys. <i>Materials Letters</i> , 2014 , 132, 4-7	3.3	10
89	Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. <i>Angewandte Chemie</i> , 2014 , 126, 2208-2212	3.6	10
88	Chemical synthesis and coercivity enhancement of Nd2Fe14B nanostructures mediated by non-magnetic layer. <i>Nano Research</i> , 2020 , 13, 1141-1148	10	10
87	A general strategy for facile synthesis of ultrathin transition metal hydroxide nanosheets. <i>Nanoscale</i> , 2019 , 11, 5141-5144	7.7	9
86	Two-Dimensional Room-Temperature Magnetic Nonstoichiometric FeSe Nanocrystals: Controllable Synthesis and Magnetic Behavior <i>Nano Letters</i> , 2022 ,	11.5	9
85	Combinatory antitumor therapy by cascade targeting of a single drug. <i>Acta Pharmaceutica Sinica B</i> , 2020 , 10, 667-679	15.5	9

84	Chemical synthesis, structure and magnetic properties of Co nanorods decorated with Fe3O4 nanoparticles. <i>Science China Materials</i> , 2018 , 61, 1614-1622	7.1	9
83	Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. <i>Energy Storage Materials</i> , 2021 , 42, 209-218	19.4	9
82	Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS. <i>ACS Nano</i> , 2020 , 14, 6897-6905	16.7	8
81	Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. <i>Science China Materials</i> , 2019 , 62, 1488-1495	7.1	8
80	A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. <i>Applied Energy</i> , 2022 , 305, 117849	10.7	8
79	Iron carbides: Magic materials with magnetic and catalytic properties. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 489, 165432	2.8	7
78	Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Liß batteries. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1483-1491	7.8	7
77	Doped Graphene: Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction (Adv. Funct. Mater. 20/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2929-2929	15.6	7
76	The ORR electron transfer kinetics control via Co-Nx and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media. <i>Journal of Energy Chemistry</i> , 2021 ,	12	7
75	Porous Carbon Spheres: Rational Design of Si/SiO2 @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery (Adv. Mater. 16/2016). <i>Advanced Materials</i> , 2016 , 28, 3166	24	7
74	Tuning crystal structure and magnetic property of dispersible FePt intermetallic nanoparticles. <i>Science China Materials</i> , 2018 , 61, 961-968	7.1	6
73	Advances in nanomedicine for head and neck cancer. Frontiers in Bioscience - Landmark, 2014, 19, 783-8	2.8	6
72	A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles. <i>Nano Research</i> ,1	10	6
71	Rare earth permanent magnetic nanostructures: chemical design and microstructure control to optimize magnetic properties. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 383-395	6.8	6
70	Covalent 2D Cr2Te3 ferromagnet. <i>Materials Research Letters</i> , 2021 , 9, 205-212	7.4	6
69	Self-assembled magnetic nanomaterials: Versatile theranostics nanoplatforms for cancer. <i>Aggregate</i> , 2021 , 2, e18	22.9	6
68	Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption. <i>Journal of Materials Science and Technology</i> , 2022 , 97, 213-222	9.1	6
67	Dative epitaxy of commensurate monocrystalline covalent-van der Waals moir upercrystal <i>Advanced Materials</i> , 2022 , e2200117	24	6

66	Confined Polysulfide Shuttle by Nickel Disulfide Nanoparticles Encapsulated in Graphene Nanoshells Synthesized by Cooking Oil. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3541-3552	6.1	5
65	Layer-by-layer assembly of L10-FePt nanoparticles with significant perpendicular magnetic anisotropy. <i>CrystEngComm</i> , 2014 , 16, 9430-9433	3.3	5
64	Shape-controlled synthesis and magnetic properties of FePt nanocubes. <i>Journal of the Korean Physical Society</i> , 2013 , 63, 302-305	0.6	5
63	Self-integration of aligned cobalt nanoparticles into silica nanotubes. <i>Applied Physics Letters</i> , 2005 , 87, 212503	3.4	5
62	Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications <i>Chemical Reviews</i> , 2022 ,	68.1	5
61	Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. <i>Applied Physics Letters</i> , 2019 , 115, 112901	3.4	4
60	Growth of quasi-texture in nanostructured magnets with ultra-high coercivity. <i>Acta Materialia</i> , 2020 , 195, 282-291	8.4	4
59	Structure model and synthesis of NdCl3-FeCl3-graphite intercalation compounds. <i>Science in China Series B: Chemistry</i> , 2000 , 43, 547-554		4
58	2D Magnetic Heterostructures and Their Interface Modulated Magnetism. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50591-50601	9.5	4
57	Structural and magnetic properties of the R10Fe90-xSix alloys with R=Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er. <i>Intermetallics</i> , 2018 , 99, 8-17	3.5	4
56	Graphene Polymer Nanocomposites for Fuel Cells 2015 , 91-130		3
55	A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors. <i>Nano Research</i> ,1	10	3
54	Free-standing 2D non-van der Waals antiferromagnetic hexagonal FeSe semiconductor: halide-assisted chemical synthesis and Fe related magnetic transitions <i>Chemical Science</i> , 2021 , 13, 203-	209	3
53	Recent Progress in Amorphous Carbon-Based Materials for Anodes of Sodium-Ion Batteries: Synthesis Strategies, Mechanisms, and Performance. <i>ChemSusChem</i> , 2021 , 14, 3693-3723	8.3	3
52	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. <i>Science China Materials</i> ,1	7.1	3
51	Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions. <i>Journal of Materials Science and Technology</i> , 2021 , 84, 116-123	9.1	3
50	Study on the Performance of the Neutron Diffractometer (HIPD at CARR) by Monte Carlo Simulation and Convolution Methods. <i>IEEE Transactions on Nuclear Science</i> , 2018 , 65, 1324-1330	1.7	2
49	Magnetic Nanomaterials for Data Storage 2017 , 439-472		2

48	Magnetic Nanomaterials for Water Remediation 2017 , 515-546		2
47	Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. <i>Rare Metals</i> , 2017 , 36, 305-306	5.5	2
46	Graphene-Based Nanomaterials for Energy Conversion and Storage. World Scientific Series on Carbon Nanoscience, 2014 , 51-82	0.5	2
45	Synthesis and Magnetic Studies of Core-Shell FePt@Fe3O4 Nanowires and Nanoparticles. <i>Advanced Materials Research</i> , 2012 , 510, 623-627	0.5	2
44	H2O2-replenishable and GSH-depletive ROS Bomblfor self-enhanced chemodynamic therapy. <i>Materials Advances</i> , 2022 , 3, 1191-1199	3.3	2
43	NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities. <i>Nano Research</i> ,1	10	2
42	Free-standing 2D ironene with magnetic vortex structure at room temperature. <i>Matter</i> , 2022 , 5, 291-30)1 12.7	2
41	2D FeOCl: A Highly In-Plane Anisotropic Antiferromagnetic Semiconductor Synthesized via Temperature-Oscillation Chemical Vapor Transport <i>Advanced Materials</i> , 2022 , e2108847	24	2
40	Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. <i>Nano Energy</i> , 2022 , 94, 106909	17.1	2
39	Hollow C@TiO2 array nanospheres as efficient sulfur hosts for lithiumBulfur batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5493-5497	5.8	2
38	Design of Magnetic Nanoparticles for MRI-Based Theranostics. <i>Springer Series in Biomaterials Science and Engineering</i> , 2016 , 3-37	0.6	1
37	Chemical Synthesis and Biomedical Applications of Iron Oxide Nanoparticles 2017 , 329-358		1
36	Overview of Magnetic Nanomaterials 2017 , 1-28		1
35	Magnetic Nanomaterials for Diagnostics 2017 , 365-392		1
34	Magnetic Nanomaterials for Electromagnetic Wave Absorption 2017 , 473-514		1
33	Wet-Phase Synthesis of Typical Magnetic Nanoparticles with Controlled Morphologies 2017 , 291-326		1
32	Large-Scale High-Yield Synthesis of PdCu@Au Tripods and the Quantification of their Luminescence Properties for Cancer Cell Imaging. <i>Journal of Nano Research</i> , 2017 , 49, 85-97	1	1
31	Synthesis of FePt Nanocubes Using Mo(Co)6 as a Reducing Agent and their Magnetic Properties. <i>Advanced Materials Research</i> , 2012 , 486, 412-416	0.5	1

30	Insight into the Property Enhancement Mechanism of Chemically Prepared Multi-Main-Phase (Nd,Ce)FeB. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 46549-46556	9.5	1
29	Sodium-Ion Batteries: Ostwald Ripening Tailoring Hierarchically Porous Na3V2(PO4)2O2F Hollow Nanospheres for Superior High-Rate and Ultrastable Sodium Ion Storage (Small 48/2020). <i>Small</i> , 2020 , 16, 2070263	11	1
28	Effective enhancement of piezomagnetic effect in core/shell structured cobalt/manganese-zinc nanocomposite. <i>Applied Materials Today</i> , 2020 , 21, 100834	6.6	1
27	Nd2Fe14B hard magnetic powders: Chemical synthesis and mechanism of coercivity. <i>Journal of Magnetism and Magnetic Materials</i> , 2021 , 518, 167384	2.8	1
26	First-order-reversal-curve analysis of rare earth permanent magnet nanostructures: insight into the coercivity enhancement mechanism through regulating the Nd-rich phase. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1975-1982	6.8	1
25	Photothermal therapy based on magnetic nanoparticles in cancer. <i>Journal of Applied Physics</i> , 2021 , 130, 070902	2.5	1
24	Merits of Pr80Ga20 grain boundary diffusion process towards high coercivity-remanence synergy of Nd-La-Ce-Fe-B sintered magnet. <i>Acta Materialia</i> , 2022 , 231, 117873	8.4	1
23	Cobalt-iron oxide nanoparticles anchored on carbon nanotube paper to accelerate polysulfide conversion for lithium-sulfur batteries. <i>Journal of Alloys and Compounds</i> , 2022 , 909, 164805	5.7	1
22	Anchoring a Xenogeneic Antigen-Guided Immune Activation System to Tumor Cell Membrane for Solid Tumor Treatment. <i>Advanced Functional Materials</i> ,2111499	15.6	1
21	Unfolding the structural features of NASICON materials for sodium-ion full cells		1
	Overgon Deduction Descriptor Efficient Overgon Deduction Catalysts of Descriptor		
20	Oxygen Reduction Reaction: Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070050	21.8	O
19	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced	21.8 13.6	
	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050 Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic Magnetic Ag Ee@Fe3O4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018).		
19	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070050 Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic Magnetic Ag He @Fe 3O4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018). <i>Advanced Science</i> , 2018 , 5, 1870049 Spin quantum well-like behavior in single-crystal Gd0.75La0.25FeO3. <i>Science China Materials</i> , 2021 ,	13.6	0
19	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050 Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic Magnetic Ag Be@Fe3O4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018). Advanced Science, 2018, 5, 1870049 Spin quantum well-like behavior in single-crystal Gd0.75La0.25FeO3. Science China Materials, 2021, 64, 531-536 Micro/nanorobots as Active Delivery Systems for Biomedicine: From Self-propulsion to Controllable	13.6 7.1	0
19 18 17	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050 Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic Magnetic Ag Ee@Fe3O4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018). Advanced Science, 2018, 5, 1870049 Spin quantum well-like behavior in single-crystal Gd0.75La0.25FeO3. Science China Materials, 2021, 64, 531-536 Micro/nanorobots as Active Delivery Systems for Biomedicine: From Self-propulsion to Controllable Navigation. Advanced Therapeutics, 2100228	13.6 7.1	0
19 18 17 16	Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050 Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic Magnetic Ag Fe @ Fe 3 O 4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018). Advanced Science, 2018, 5, 1870049 Spin quantum well-like behavior in single-crystal Gd0.75La0.25FeO3. Science China Materials, 2021, 64, 531-536 Micro/nanorobots as Active Delivery Systems for Biomedicine: From Self-propulsion to Controllable Navigation. Advanced Therapeutics, 2100228 Bimetallic Nanoplates and Nanosheets 2018, 293-313 Photothermal Therapy: Multifunctional Fe5C2 Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy (Adv.	7.1 4.9	0

12	Magnetism of Nanomaterials 2017 , 29-80
11	Overview of Synthesis of Magnetic Nanomaterials 2017 , 81-120
10	Synthesis of Soft Magnetic Nanomaterials and Alloys 2017 , 121-146
9	Synthesis of Nanostructured Rare-Earth Permanent Magnets 2017 , 147-174
8	Synthesis of Rare Earth Free Permanent Magnets 2017 , 175-190
7	Synthesis and Properties of Magnetic Chalcogenide Nanostructures 2017 , 191-216
6	Magnetic Multicomponent Heterostructured Nanocrystals 2017 , 217-290
5	Magnetic Nanomaterials for Therapy 2017 , 393-438
4	Multifunctional Nanoparticles for Multimodal Molecular Imaging 2011 , 529-540
3	Magnetic Properties and Fabrication of Monodisperse FePd Nanoparticles. <i>Materials Research</i> Society Symposia Proceedings, 2004 , 818, 206
2	Magnetic Nanostructures for MRI-Based Cancer Detection 2016 , 327-359
1	Temperature and Tumor Microenvironment Dual Responsive Mesoporous Magnetic Nanospheres 7.2 7.2