List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458237/publications.pdf Version: 2024-02-01

		3325	7333
306	26,205	91	152
papers	citations	h-index	g-index
323	323	323	29903
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	11.1	1,260
2	Synthesis of Phosphorusâ€Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Advanced Materials, 2013, 25, 4932-4937.	11.1	915
3	Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. Journal of the American Chemical Society, 2007, 129, 8698-8699.	6.6	853
4	Controlled PEGylation of Monodisperse Fe ₃ O ₄ Nanoparticles for Reduced Non‧pecific Uptake by Macrophage Cells. Advanced Materials, 2007, 19, 3163-3166.	11.1	607
5	Fe ₅ C ₂ Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 15814-15821.	6.6	529
6	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009, 21, 1778-1780.	3.2	503
7	Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. Journal of Materials Chemistry A, 2014, 2, 15-32.	5.2	427
8	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	8.2	426
9	Hybrid of Iron Nitride and Nitrogenâ€Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2014, 24, 2930-2937.	7.8	391
10	Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Advanced Energy Materials, 2016, 6, 1600374.	10.2	383
11	A General Strategy for Synthesizing FePt Nanowires and Nanorods. Angewandte Chemie - International Edition, 2007, 46, 6333-6335.	7.2	297
12	Nickel Sulfide/Nitrogenâ€Doped Graphene Composites: Phaseâ€Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small, 2013, 9, 1321-1328.	5.2	297
13	Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 2015, 8, 129-139.	5.8	284
14	Rational Design of Si/SiO ₂ @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for Highâ€Performance Li–S Battery. Advanced Materials, 2016, 28, 3167-3172.	11.1	275
15	Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications, 2008, , 6576.	2.2	272
16	Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications, 2011, 47, 5130.	2.2	269
17	Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 6329-6332.	7.2	266
18	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	2.8	265

#	Article	IF	CITATIONS
19	Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 42102-42110.	4.0	247
20	A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 16670-16678.	5.2	241
21	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy, 2017, 42, 334-340.	8.2	238
22	A Versatile Route toward the Electromagnetic Functionalization of Metal–Organic Framework-Derived Three-Dimensional Nanoporous Carbon Composites. ACS Applied Materials & Interfaces, 2018, 10, 8965-8975.	4.0	234
23	Multifunctional Fe ₅ C ₂ Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomographyâ€Guided Photothermal Therapy. Advanced Materials, 2014, 26, 4114-4120.	11.1	232
24	Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Accounts of Chemical Research, 2018, 51, 404-413.	7.6	232
25	Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 2014, 9, 668-683.	6.2	230
26	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2009, 2, 706-712.	5.8	224
27	Multifunctional Co ₃ S ₄ /Graphene Composites for Lithium Ion Batteries and Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 5183-5190.	1.7	219
28	N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted "cutting-thin―technique: A universal synthesis and multifunctional applications. Nano Energy, 2016, 28, 346-355.	8.2	217
29	High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization. Journal of Physical Chemistry B, 2005, 109, 19094-19098.	1.2	212
30	Hierarchically Porous Fe ₂ CoSe ₄ Binaryâ€Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodiumâ€Ion Batteries. Advanced Materials, 2018, 30, e1802745.	11.1	201
31	Hybrid of Co ₃ Sn ₂ @Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode. ACS Nano, 2013, 7, 10307-10318.	7.3	194
32	Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticlesElectronic supplementary information (ESI) available: size distributions of samples modified with TOPO + PVP, HDA + PVP, and PVP only. See http://www.rsc.org/suppdata/jm/b3/b305526d/. lournal of Materials Chemistry, 2003, 13, 1983.	6.7	193
33	Enhanced Polysulfide Regulation <i>via</i> Porous Catalytic V ₂ O ₃ /V ₈ C ₇ Heterostructures Derived from Metal–Organic Frameworks toward High-Performance Li–S Batteries. ACS Nano, 2020, 14, 8495-8507.	7.3	192
34	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€Ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
35	Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale, 2012, 4, 7326.	2.8	189
36	Monodisperse Au–Fe ₂ C Janus Nanoparticles: An Attractive Multifunctional Material for Triple-Modal Imaging-Guided Tumor Photothermal Therapy. ACS Nano, 2017, 11, 9239-9248.	7.3	189

#	Article	IF	CITATIONS
37	Transition metal chalcogenide anodes for sodium storage. Materials Today, 2020, 35, 131-167.	8.3	186
38	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 2006, 18, 5401-5403.	3.2	185
39	Smart Hybridization of TiO ₂ Nanorods and Fe ₃ O ₄ Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for Highâ€Rate Lithium Storage. Advanced Functional Materials, 2015, 25, 3341-3350.	7.8	183
40	Integrated Design of MnO ₂ @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries. Small, 2017, 13, 1700087.	5.2	178
41	Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. Advanced Energy Materials, 2020, 10, 1900375.	10.2	175
42	Size-controlled synthesis of nickel nanoparticles. Applied Surface Science, 2005, 241, 218-222.	3.1	174
43	Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic propertiesElectronic supplementary information (ESI) available: XPS of Ni nanoparticles; plot of magnetization vs. applied field. See http://www.rsc.org/suppdata/jm/b3/b303226d/. Journal of Materials Chemistry. 2003. 13. 1510.	6.7	165
44	Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 3014-3038.	5.2	165
45	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie - International Edition, 2021, 60, 181-185.	7.2	161
46	Nanoscale Coordination Polymers for Synergistic NO and Chemodynamic Therapy of Liver Cancer. Nano Letters, 2019, 19, 2731-2738.	4.5	158
47	A Facile Synthesis of SmCo ₅ Magnets from Core/Shell Co/Sm ₂ O ₃ Nanoparticles. Advanced Materials, 2007, 19, 3349-3352.	11.1	157
48	Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nature Communications, 2019, 10, 4418.	5.8	153
49	Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nature Communications, 2020, 11, 3884.	5.8	152
50	Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chemical Society Reviews, 2014, 43, 8098-8113.	18.7	149
51	Electrode Nanostructures in Lithiumâ€Based Batteries. Advanced Science, 2014, 1, 1400012.	5.6	148
52	Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Materials, 2018, 13, 19-28.	9.5	148
53	Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 2014, 23, 037503.	0.7	145
54	Octahedral Fe3O4 nanoparticles and their assembled structures. Chemical Communications, 2009, , 4378.	2.2	143

#	Article	IF	CITATIONS
55	SnO ₂ nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy and Environmental Science, 2020, 13, 571-578.	15.6	143
56	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46, 3920.	2.2	140
57	A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy, 2018, 48, 510-517.	8.2	139
58	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium‧ulfur Batteries. Advanced Energy Materials, 2016, 6, 1502518.	10.2	138
59	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive Fe ₅ C ₂ @Fe ₃ O ₄ Nanoparticles. ACS Nano, 2019, 13, 10002-10014.	7.3	138
60	Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled <i>via</i> Fe ₅ C ₂ Nanoparticles. ACS Nano, 2016, 10, 159-169.	7.3	136
61	Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy, 2017, 41, 426-433.	8.2	136
62	Sulfur Hosts against the Shuttle Effect. Small Methods, 2018, 2, 1700345.	4.6	132
63	A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 9502-9509.	5.2	131
64	3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance. Advanced Functional Materials, 2019, 29, 1808468.	7.8	130
65	Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Research, 2014, 50, 124-134.	5.3	125
66	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
67	ltinerant ferromagnetic half metallic cobalt–iron couples: promising bifunctional electrocatalysts for ORR and OER. Journal of Materials Chemistry A, 2019, 7, 27175-27185.	5.2	122
68	Stimuli-responsive cancer therapy based on nanoparticles. Chemical Communications, 2014, 50, 11614-11630.	2.2	121
69	Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy, 2015, 11, 267-276.	8.2	121
70	Self-Assembly of Co Nanoplatelets into Spheres:  Synthesis and Characterization. Chemistry of Materials, 2005, 17, 3994-3996.	3.2	117
71	Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Research, 2015, 8, 3725-3736.	5.8	117
72	Lightweight and Flexible Cotton Aerogel Composites for Electromagnetic Absorption and Shielding Applications. Advanced Electronic Materials, 2020, 6, 1900796.	2.6	117

#	Article	IF	CITATIONS
73	Synergistic Polarization Loss of MoS ₂ â€Based Multiphase Solid Solution for Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	116
74	Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. Journal of Hazardous Materials, 2012, 227-228, 461-468.	6.5	115
75	Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie - International Edition, 2014, 53, 2176-2180.	7.2	115
76	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie - International Edition, 2018, 57, 6786-6790.	7.2	115
77	Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. Acta Materialia, 2018, 145, 331-336.	3.8	115
78	Threeâ€Ðimensional Nitrogenâ€Ðoped Graphene Nanoribbons Aerogel as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. Small, 2015, 11, 1423-1429.	5.2	114
79	Controlled Growth and Thicknessâ€Dependent Conductionâ€Type Transition of 2D Ferrimagnetic Cr ₂ S ₃ Semiconductors. Advanced Materials, 2020, 32, e1905896.	11.1	114
80	Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Nanoscale, 2015, 7, 7189-7196.	2.8	113
81	Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Research, 2022, 15, 1809-1816.	5.8	111
82	Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale, 2014, 6, 1049-1055.	2.8	109
83	Manipulation of Edgeâ€Site Fe–N ₂ Moiety on Holey Fe, N Codoped Graphene to Promote the Cycle Stability and Rate Capacity of Li–S Batteries. Advanced Functional Materials, 2019, 29, 1807485.	7.8	109
84	Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage. Nano Energy, 2016, 30, 347-354.	8.2	107
85	N-Doped Carbon Nanosheet Networks with Favorable Active Sites Triggered by Metal Nanoparticles as Bifunctional Oxygen Electrocatalysts. ACS Energy Letters, 2018, 3, 2914-2920.	8.8	107
86	Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe ₃ O ₄ by selectively adsorbed halide ions. Chemical Science, 2017, 8, 473-481.	3.7	105
87	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	8.3	103
88	Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy, 2019, 55, 37-41.	8.2	100
89	Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Research, 2013, 6, 1-9.	5.8	99
90	Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chemical Engineering Journal, 2016, 297, 304-314.	6.6	99

#	Article	IF	CITATIONS
91	Visualization nanozyme based on tumor microenvironment "unlocking―for intensive combination therapy of breast cancer. Science Advances, 2020, 6, .	4.7	97
92	Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. Journal of Materials Chemistry A, 2013, 1, 6888.	5.2	96
93	Nitrogenâ€Doped Carbon Nanotube Aerogels for Highâ€Performance ORR Catalysts. Small, 2015, 11, 3903-3908.	5.2	96
94	Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chemical Engineering Journal, 2019, 358, 962-968.	6.6	91
95	Facile self-assembly synthesis of titanate/Fe ₃ O ₄ nanocomposites for the efficient removal of Pb ²⁺ from aqueous systems. Journal of Materials Chemistry A, 2013, 1, 805-813.	5.2	89
96	Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie, 2014, 126, 2208-2212.	1.6	89
97	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. Nano Energy, 2018, 50, 273-280.	8.2	89
98	Preparation and Characterization of Monodisperse FePd Nanoparticles. Chemistry of Materials, 2004, 16, 5149-5152.	3.2	86
99	Sm Co 5 â^• Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Applied Physics Letters, 2007, 91, .	1.5	85
100	Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries. Advanced Functional Materials, 2021, 31, 2100186.	7.8	85
101	One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts. Scientific Reports, 2015, 5, 12389.	1.6	81
102	In situ Fe ₂ N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale, 2017, 9, 8102-8106.	2.8	80
103	MXenes: Synthesis strategies and lithium-sulfur battery applications. EScience, 2022, 2, 164-182.	25.0	80
104	Enzymeâ€Responsive Multifunctional Magnetic Nanoparticles for Tumor Intracellular Drug Delivery and Imaging. Chemistry - an Asian Journal, 2011, 6, 1381-1389.	1.7	76
105	Facile Preparation of Nitrogen-Doped Few-Layer Graphene via Supercritical Reaction. ACS Applied Materials & Interfaces, 2011, 3, 2259-2264.	4.0	75
106	Hydrothermal Synthesis and Crystal Structure of a Novel Two-Dimensional Vanadium Oxide Complex with a 6,14-Net Sinusoidal Ruffling Anionic Layer:  [Ni(phen)2V4O11] (phen = 1,10-Phenanthroline). Inorganic Chemistry, 2002, 41, 140-143.	1.9	74
107	Stable lithium metal anode enabled by lithium metal partial alloying. Nano Energy, 2019, 65, 103989.	8.2	73
108	Inorganic Nanocrystal Self-Assembly via the Inclusion Interaction of β-Cyclodextrins:  Toward 3D Spherical Magnetite. Journal of Physical Chemistry B, 2005, 109, 4845-4852.	1.2	71

#	Article	IF	CITATIONS
109	Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications. ChemNanoMat, 2015, 1, 376-398.	1.5	71
110	Light-weight Gadolinium Hydroxide@polypyrrole Rare-Earth Nanocomposites with Tunable and Broadband Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 12752-12760.	4.0	69
111	Chemical Confinement and Utility of Lithium Polysulfides in Lithium Sulfur Batteries. Small Methods, 2020, 4, 1900001.	4.6	68
112	Bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions. Water Research, 2013, 47, 1837-1847.	5.3	67
113	Construction of Synergistic Fe ₅ C ₂ /Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer–Tropsch Synthesis Catalyst. ACS Catalysis, 2017, 7, 5661-5667.	5.5	67
114	Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today, 2019, 26, 108-122.	6.2	67
115	Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations. Advanced Energy Materials, 2021, 11, 2003823.	10.2	66
116	Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 8561-8567.	5.2	66
117	Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15991-16001.	4.0	64
118	Ultrathin Fe ₂ O ₃ nanoflakes using smart chemical stripping for high performance lithium storage. Journal of Materials Chemistry A, 2017, 5, 18737-18743.	5.2	62
119	Atomic-Scale Structure of Nanocrystals by High-Energy X-ray Diffraction and Atomic Pair Distribution Function Analysis:  Study of FexPd100-x(x= 0, 26, 28, 48) Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 714-720.	1.5	61
120	Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. Journal of Materials Chemistry A, 2019, 7, 11566-11583.	5.2	61
121	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	4.2	60
122	Magnetic Structure and Metamagnetic Transitions in the van der Waals Antiferromagnet CrPS ₄ . Advanced Materials, 2020, 32, e2001200.	11.1	60
123	Solvothermal reduction synthesis and magnetic properties of polymer protected iron and nickel nanocrystals. Journal of Alloys and Compounds, 2004, 365, 112-116.	2.8	59
124	Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6]·4H2O@GO Particles: A Novel Chemical Approach. Scientific Reports, 2013, 3, 3542.	1.6	59
125	Fe ₅ C ₂ Nanoparticles with High MRI Contrast Enhancement for Tumor Imaging. Small, 2014, 10, 1245-1249.	5.2	58
126	Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications. Nanoscale Horizons, 2017, 2, 81-88.	4.1	57

#	Article	IF	CITATIONS
127	Efficient polysulfides anchoring for Li-S batteries: Combined physical adsorption and chemical conversion in V2O5 hollow spheres wrapped in nitrogen-doped graphene network. Chemical Engineering Journal, 2019, 378, 122189.	6.6	57
128	Polyanion-type electrode materials for advanced sodium-ion batteries. Materials Today Nano, 2020, 10, 100072.	2.3	57
129	Phonon scattering and exciton localization: molding exciton flux in two dimensional disorder energy landscape. ELight, 2021, 1, .	11.9	57
130	Controllable Nd ₂ Fe ₁₄ B/α-Fe nanocomposites: chemical synthesis and magnetic properties. Nanoscale, 2014, 6, 10638-10642.	2.8	55
131	Rational design of MXene@TiO ₂ nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 16678-16684.	2.8	55
132	Freeâ€Standing, Foldable V ₂ O ₃ /Multichannel Carbon Nanofibers Electrode for Flexible Liâ€Ion Batteries with Ultralong Lifespan. Small, 2020, 16, e2005302.	5.2	54
133	The ORR electron transfer kinetics control via Co-N and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media. Journal of Energy Chemistry, 2022, 68, 184-194.	7.1	54
134	General Approach to Produce Nanostructured Binary Transition Metal Selenides as Highâ€₽erformance Sodium Ion Battery Anodes. Small, 2019, 15, e1901995.	5.2	52
135	Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application. Journal of Power Sources, 2015, 284, 236-244.	4.0	51
136	Control over large-volume changes of lithium battery anodes via active–inactive metal alloy embedded in porous carbon. Nano Energy, 2015, 15, 755-765.	8.2	51
137	Halide Ion-Mediated Synthesis of L1 ₀ -FePt Nanoparticles with Tunable Magnetic Properties. Nano Letters, 2018, 18, 7839-7844.	4.5	51
138	Micro/Nano Na ₃ V ₂ (PO ₄) ₃ /N-Doped Carbon Composites with a Hierarchical Porous Structure for High-Rate Pouch-Type Sodium-Ion Full-Cell Performance. ACS Applied Materials & Interfaces, 2021, 13, 8445-8454.	4.0	51
139	Liquid-Phase Templateless Synthesis of Pt-on-Pd _{0.85} Bi _{0.15} Nanowires and PtPdBi Porous Nanoparticles with Superior Electrocatalytic Activity. Chemistry of Materials, 2013, 25, 457-465.	3.2	50
140	Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP ₂ Se ₆ . Nanoscale, 2018, 10, 13986-13993.	2.8	50
141	Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Research, 2012, 5, 679-694.	5.8	49
142	Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews, 2022, 122, 5411-5475.	23.0	49
143	Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Research, 2011, 4, 836-848.	5.8	48
144	Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries. Materials Today Energy, 2018, 10, 108-117.	2.5	48

#	Article	IF	CITATIONS
145	Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale, 2013, 5, 11954.	2.8	45
146	Ferromagnetic FePt Nanowires: Solvothermal Reduction Synthesis and Characterization. Small, 2006, 2, 235-238.	5.2	44
147	Synthesis and catalysis of oleic acid-coated Fe3O4 nanocrystals for direct coal liquefaction. Catalysis Communications, 2012, 26, 231-234.	1.6	44
148	Functional Magnetic Nanoparticles for Non-Viral Gene Delivery and MR Imaging. Pharmaceutical Research, 2014, 31, 1377-1389.	1.7	44
149	A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Applied Energy, 2022, 305, 117849.	5.1	44
150	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. Electrochemical Energy Reviews, 2018, 1, 403-432.	13.1	42
151	Thin-carbon-layer-enveloped cobalt–iron oxide nanocages as a high-efficiency sulfur container for Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 20604-20611.	5.2	42
152	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie, 2021, 133, 183-187.	1.6	42
153	Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. RSC Advances, 2016, 6, 92152-92158.	1.7	41
154	Highly Reversible Li–Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer. Nano-Micro Letters, 2018, 10, 59.	14.4	41
155	Structure Engineering of 2D Materials toward Magnetism Modulation. Small Structures, 2021, 2, 2100077.	6.9	41
156	Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis. CCS Chemistry, 2021, 3, 2712-2724.	4.6	41
157	Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Advances, 2014, 4, 7374.	1.7	40
158	Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Research, 2016, 19, 86-95.	2.4	40
159	Towards 3-D Spherical Self-Assembly by Ternary Surfactant Combinations: The Case of Magnetite Nanoparticles. European Journal of Inorganic Chemistry, 2004, 2004, 1169-1173.	1.0	39
160	Unfolding the structural features of NASICON materials for sodiumâ€ion full cells. , 2022, 4, 776-819.		39
161	Polyaspartic acid coated manganese oxide nanoparticles for efficient liver MRI. Nanoscale, 2011, 3, 4943.	2.8	38
162	Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li–S batteries. Nanoscale, 2019, 11, 7440-7446.	2.8	38

#	Article	IF	CITATIONS
163	Fe ₅ C ₂ nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. Journal of Materials Chemistry B, 2015, 3, 3993-4000.	2.9	37
164	Biocompatibility of iron carbide and detection of metals ions signaling proteomic analysis via HPLC/ESI-Orbitrap. Nano Research, 2017, 10, 1912-1923.	5.8	37
165	Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 6989-7003.	4.0	36
166	Magnetic nanoparticle-based cancer therapy. Chinese Physics B, 2013, 22, 027506.	0.7	35
167	Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. Science of the Total Environment, 2020, 704, 135286.	3.9	35
168	Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion. EnergyChem, 2020, 2, 100036.	10.1	35
169	Controlled synthesis of FePt–Au hybrid nanoparticles triggered by reaction atmosphere and FePt seeds. Nanoscale, 2013, 5, 9141.	2.8	34
170	Ostwald Ripening Tailoring Hierarchically Porous Na ₃ V ₂ (PO ₄) ₂ O ₂ F Hollow Nanospheres for Superior Highâ€Rate and Ultrastable Sodium Ion Storage. Small, 2020, 16, e2004925.	5.2	34
171	2D FeOCl: A Highly Inâ€Plane Anisotropic Antiferromagnetic Semiconductor Synthesized via Temperatureâ€Oscillation Chemical Vapor Transport. Advanced Materials, 2022, 34, e2108847.	11.1	34
172	Functional MnO nanoclusters for efficient siRNA delivery. Chemical Communications, 2011, 47, 12152.	2.2	33
173	Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Metals, 2013, 32, 105-112.	3.6	33
174	Facile synthesis of anisotropic single crystalline α-Fe ₂ O ₃ nanoplates and their facet-dependent catalytic performance. Inorganic Chemistry Frontiers, 2015, 2, 576-583.	3.0	33
175	A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing. Journal of Power Sources, 2017, 347, 29-36.	4.0	33
176	Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2000845.	3.9	33
177	Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 97, 213-222.	5.6	33
178	SnS ₂ /Graphene Composites: Excellent Anode Materials for Lithium Ion Battery and Photolysis Catalysts. Science of Advanced Materials, 2013, 5, 1667-1675.	0.1	33
179	LiFePO ₄ Nanocrystals: Liquid-Phase Reduction Synthesis and Their Electrochemical Performance. ACS Applied Materials & Interfaces, 2012, 4, 3062-3068.	4.0	32
180	Multifunctional Metal Rattle-Type Nanocarriers for MRI-Guided Photothermal Cancer Therapy. Molecular Pharmaceutics, 2014, 11, 3386-3394.	2.3	32

#	Article	IF	CITATIONS
181	Grapheneâ€Based Sulfur Composites for Energy Storage and Conversion in Liâ€5 Batteries. Chinese Journal of Chemistry, 2016, 34, 13-31.	2.6	32
182	Galvanic Displacement Synthesis of Monodisperse Janus―and Satellite‣ike Plasmonic–Magnetic Ag–Fe@Fe ₃ O ₄ Heterostructures with Reduced Cytotoxicity. Advanced Science, 2018, 5, 1800271.	5.6	32
183	Moltenâ€Saltâ€Assisted Chemical Vapor Deposition Process for Substitutional Doping of Monolayer MoS 2 and Effectively Altering the Electronic Structure and Phononic Properties. Advanced Science, 2020, 7, 2001080.	5.6	32
184	Recent Progress in Amorphous Carbonâ€Based Materials for Anodes of Sodiumâ€lon Batteries: Synthesis Strategies, Mechanisms, and Performance. ChemSusChem, 2021, 14, 3693-3723.	3.6	32
185	Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Science China Materials, 2020, 63, 1910-1919.	3.5	31
186	Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. Nano Energy, 2022, 94, 106909.	8.2	31
187	PbS Cubes with Pyramidal Pits: An Example of Etching Growth. Crystal Growth and Design, 2009, 9, 3119-3123.	1.4	30
188	Boosting Highâ€Rate Lithium Storage of V ₂ O ₅ Nanowires by Selfâ€Assembly on Nâ€Đoped Graphene Nanosheets. ChemElectroChem, 2016, 3, 1730-1736.	1.7	30
189	FePt concave nanocubes with enhanced methanol oxidation activity. CrystEngComm, 2012, 14, 7572.	1.3	29
190	Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Materials, 2021, 42, 209-218.	9.5	29
191	Ultra-large-scale Synthesis of Fe ₃ O ₄ Nanoparticles and Their Application for Direct Coal Liquefaction. Industrial & Engineering Chemistry Research, 2014, 53, 6718-6722.	1.8	28
192	Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. Journal of Contaminant Hydrology, 2015, 181, 153-160.	1.6	28
193	Two-Dimensional Room-Temperature Magnetic Nonstoichiometric Fe ₇ Se ₈ Nanocrystals: Controllable Synthesis and Magnetic Behavior. Nano Letters, 2022, 22, 1242-1250.	4.5	28
194	Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene. Science China Materials, 2015, 58, 114-125.	3.5	27
195	Surface modification of magnetic nanoparticles in biomedicine. Chinese Physics B, 2015, 24, 014704.	0.7	26
196	Au ₃ Cu tetrapod nanocrystals: highly efficient and metabolizable multimodality imaging-guided NIR-II photothermal agents. Nanoscale Horizons, 2018, 3, 624-631.	4.1	26
197	Achieving High-Energy Full-Cell Lithium-Storage Performance by Coupling High-Capacity V ₂ O ₃ with Low-Potential Ni ₂ P Anode. ACS Applied Materials & Interfaces, 2019, 11, 19-25.	4.0	26
198	Controlled synthesis of CoO/C and Co/C nanocomposites via a molten salt method and their lithium-storage properties. New Journal of Chemistry, 2016, 40, 2722-2729.	1.4	25

#	Article	IF	CITATIONS
199	Intraorgan Targeting of Gold Conjugates for Precise Liver Cancer Treatment. ACS Applied Materials & Interfaces, 2017, 9, 31458-31468.	4.0	25
200	Two-Dimensional Magnetic Nanostructures. Trends in Chemistry, 2020, 2, 163-173.	4.4	25
201	Covalent 2D Cr ₂ Te ₃ ferromagnet. Materials Research Letters, 2021, 9, 205-212.	4.1	25
202	Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe ₅ C ₂ Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 5154-5160.	1.5	24
203	Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles. Nano Research, 2018, 11, 3396-3410.	5.8	23
204	High-Fidelity Transfer of Chemical Vapor Deposition Grown 2D Transition Metal Dichalcogenides via Substrate Decoupling and Polymer/Small Molecule Composite. ACS Nano, 2020, 14, 7370-7379.	7.3	22
205	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Science China Materials, 2022, 65, 328-336.	3.5	22
206	Chemical synthesis of Nd ₂ Fe ₁₄ B/Fe ₃ B nanocomposites. Nanoscale, 2016, 8, 12879-12882.	2.8	21
207	Iron carbides: Magic materials with magnetic and catalytic properties. Journal of Magnetism and Magnetic Materials, 2019, 489, 165432.	1.0	21
208	A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustainable Energy and Fuels, 2019, 3, 2577-2582.	2.5	20
209	Anisotropic fluoride nanocrystals modulated by facet-specific passivation and their disordered surfaces. National Science Review, 2020, 7, 841-848.	4.6	20
210	Chemical synthesis and coercivity enhancement of Nd2Fe14B nanostructures mediated by non-magnetic layer. Nano Research, 2020, 13, 1141-1148.	5.8	20
211	Dative Epitaxy of Commensurate Monocrystalline Covalent van der Waals Moiré Supercrystal. Advanced Materials, 2022, 34, e2200117.	11.1	20
212	Amelioration of systemic antitumor immune responses in cocktail therapy by immunomodulatory nanozymes. Science Advances, 2022, 8, .	4.7	20
213	Long-chain poly-arginine functionalized porous Fe3O4 microspheres as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Research, 2017, 27, 99-108.	2.4	19
214	Magnetic Heterostructures: Interface Control to Optimize Magnetic Property and Multifunctionality. ACS Applied Materials & Interfaces, 2020, 12, 36811-36822.	4.0	19
215	A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles. Nano Research, 2022, 15, 446-451.	5.8	19
216	2D Magnetic Heterostructures and Their Interface Modulated Magnetism. ACS Applied Materials & amp; Interfaces, 2021, 13, 50591-50601.	4.0	19

#	Article	IF	CITATIONS
217	Exchangeâ€Coupled fctâ€FePd/αâ€Fe Nanocomposite Magnets Converted from Pd/Fe ₃ O ₄ Core/Shell Nanoparticles. Chemistry - A European Journal, 2014, 20, 15197-15202.	1.7	18
218	Rare earth permanent magnetic nanostructures: chemical design and microstructure control to optimize magnetic properties. Inorganic Chemistry Frontiers, 2021, 8, 383-395.	3.0	18
219	Merits of Pr80Ga20 grain boundary diffusion process towards high coercivity‒remanence synergy of Nd‒La‒Ce‒Fe‒B sintered magnet. Acta Materialia, 2022, 231, 117873.	3.8	18
220	Size-Controlled Synthesis and Magnetic Studies of Monodisperse FePd Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 202-208.	0.9	17
221	An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. Algal Research, 2018, 31, 173-182.	2.4	17
222	Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS ₂ . ACS Nano, 2020, 14, 6897-6905.	7.3	17
223	Multifunctional ultrasmall-MoS ₂ /graphene composites for high sulfur loading Li–S batteries. Materials Chemistry Frontiers, 2020, 4, 1483-1491.	3.2	17
224	Binaryâ€Metal Selenides: General Approach to Produce Nanostructured Binary Transition Metal Selenides as Highâ€Performance Sodium Ion Battery Anodes (Small 33/2019). Small, 2019, 15, 1970176.	5.2	16
225	Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. Science China Materials, 2019, 62, 1488-1495.	3.5	16
226	Selfâ€assembled magnetic nanomaterials: Versatile theranostics nanoplatforms for cancer. Aggregate, 2021, 2, e18.	5.2	16
227	Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries. Research, 2020, 2020, 5714349.	2.8	16
228	Smartly Designed Hierarchical MnO ₂ @Fe ₃ O ₄ /CNT Hybrid Films as Binderâ€free Anodes for Superior Lithium Storage. Chemistry - an Asian Journal, 2018, 13, 3027-3031.	1.7	15
229	A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors. Nano Research, 2022, 15, 4274-4284.	5.8	15
230	Magnetic nanoparticle-based cancer nanodiagnostics. Chinese Physics B, 2013, 22, 058702.	0.7	14
231	Nanomagnetism: Principles, nanostructures, and biomedical applications. Chinese Physics B, 2014, 23, 057505.	0.7	14
232	A general strategy for facile synthesis of ultrathin transition metal hydroxide nanosheets. Nanoscale, 2019, 11, 5141-5144.	2.8	14
233	Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharmaceutica Sinica B, 2020, 10, 667-679.	5.7	14
234	Confined Polysulfide Shuttle by Nickel Disulfide Nanoparticles Encapsulated in Graphene Nanoshells Synthesized by Cooking Oil. ACS Applied Energy Materials, 2020, 3, 3541-3552.	2.5	14

#	Article	IF	CITATIONS
235	Free-standing 2D non-van der Waals antiferromagnetic hexagonal FeSe semiconductor: halide-assisted chemical synthesis and Fe ²⁺ related magnetic transitions. Chemical Science, 2021, 13, 203-209.	3.7	14
236	One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. Chemical Communications, 2011, 47, 9095.	2.2	13
237	Chemical synthesis of magnetic nanocrystals: Recent progress. Chinese Physics B, 2013, 22, 107503.	0.7	13
238	Free-standing 2D ironene with magnetic vortex structure at room temperature. Matter, 2022, 5, 291-301.	5.0	13
239	Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters, 2019, 115, .	1.5	12
240	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie, 2018, 130, 6902-6906.	1.6	11
241	Stimuliâ€Responsive Nanotheranostics. Advanced Healthcare Materials, 2021, 10, e2100243.	3.9	11
242	Facile synthesis and dehydrogenation properties of Fe3B nanoalloys. Materials Letters, 2014, 132, 4-7.	1.3	10
243	NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities. Nano Research, 2022, 15, 4310-4319.	5.8	10
244	Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism. Green Energy and Environment, 2023, 8, 115-140.	4.7	10
245	Advances in nanomedicine for head and neck cancer. Frontiers in Bioscience - Landmark, 2014, 19, 783.	3.0	9
246	Porous Carbon Spheres: Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery (Adv. Mater. 16/2016). Advanced Materials, 2016, 28, 3166-3166.	11.1	9
247	Chemical synthesis, structure and magnetic properties of Co nanorods decorated with Fe3O4 nanoparticles. Science China Materials, 2018, 61, 1614-1622.	3.5	9
248	Growth of quasi-texture in nanostructured magnets with ultra-high coercivity. Acta Materialia, 2020, 195, 282-291.	3.8	9
249	Photothermal therapy based on magnetic nanoparticles in cancer. Journal of Applied Physics, 2021, 130, ·	1.1	9
250	Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions. Journal of Materials Science and Technology, 2021, 84, 116-123.	5.6	9
251	Iron Carbide Nanostructures: An Emerging Material for Tumor Theranostics. Accounts of Materials Research, 2022, 3, 89-99.	5.9	9
252	H ₂ O ₂ -replenishable and GSH-depletive ROS â€~bomb' for self-enhanced chemodynamic therapy. Materials Advances, 2022, 3, 1191-1199.	2.6	8

#	Article	IF	CITATIONS
253	Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Selfâ€Propulsion to Controllable Navigation. Advanced Therapeutics, 2022, 5, .	1.6	8
254	Doped Graphene: Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 2929-2929.	7.8	7
255	Nd2Fe14B hard magnetic powders: Chemical synthesis and mechanism of coercivity. Journal of Magnetism and Magnetic Materials, 2021, 518, 167384.	1.0	7
256	Cobalt-iron oxide nanoparticles anchored on carbon nanotube paper to accelerate polysulfide conversion for lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 909, 164805.	2.8	7
257	Self-integration of aligned cobalt nanoparticles into silica nanotubes. Applied Physics Letters, 2005, 87, 212503.	1.5	6
258	Shape-controlled synthesis and magnetic properties of FePt nanocubes. Journal of the Korean Physical Society, 2013, 63, 302-305.	0.3	6
259	Layer-by-layer assembly of L10-FePt nanoparticles with significant perpendicular magnetic anisotropy. CrystEngComm, 2014, 16, 9430-9433.	1.3	6
260	Tuning crystal structure and magnetic property of dispersible FePt intermetallic nanoparticles. Science China Materials, 2018, 61, 961-968.	3.5	6
261	Structural and magnetic properties of the R10Fe90-xSix alloys with R=Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er. Intermetallics, 2018, 99, 8-17.	1.8	6
262	Structure model and synthesis of NdCl3-FeCl3-graphite intercalation compounds. Science in China Series B: Chemistry, 2000, 43, 547-554.	0.8	5
263	Hollow C@TiO ₂ array nanospheres as efficient sulfur hosts for lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 5493-5497.	2.5	5
264	Anchoring a Xenogeneic Antigenâ€Guided Immune Activation System to Tumor Cell Membrane for Solid Tumor Treatment. Advanced Functional Materials, 0, , 2111499.	7.8	5
265	Magnetic Nanomaterials for Data Storage. , 0, , 439-472.		4
266	Insight into the Property Enhancement Mechanism of Chemically Prepared Multi-Main-Phase (Nd,Ce) ₂ Fe ₁₄ B. ACS Applied Materials & Interfaces, 2020, 12, 46549-46556.	4.0	4
267	Graphene Polymer Nanocomposites for Fuel Cells. , 2015, , 91-130.		3
268	Magnetic Nanomaterials for Water Remediation. , 0, , 515-546.		3
269	Study on the Performance of the Neutron Diffractometer (HIPD at CARR) by Monte Carlo Simulation and Convolution Methods. IEEE Transactions on Nuclear Science, 2018, 65, 1324-1330.	1.2	3
270	Oxygen Reduction Reaction: Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050.	10.2	3

#	Article	IF	CITATIONS
271	A hierarchically porous TiO ₂ @C membrane with oxygen vacancies: a novel platform for enhancing the catalytic conversion of polysulfides. Dalton Transactions, 2022, 51, 2855-2862.	1.6	3
272	Temperature and Tumor Microenvironment Dual Responsive Mesoporous Magnetic Nanospheres for Magnetothermal Effect-Induced Cancer Theranostics. CCS Chemistry, 2023, 5, 469-485.	4.6	3
273	Synthesis of FePt Nanocubes Using Mo(Co) ₆ as a Reducing Agent and their Magnetic Properties. Advanced Materials Research, 2012, 486, 412-416.	0.3	2
274	Synthesis and Magnetic Studies of Core-Shell FePt@Fe ₃ O _{4 } Nanowires and Nanoparticles. Advanced Materials Research, 0, 510, 623-627.	0.3	2
275	Graphene-Based Nanomaterials for Energy Conversion and Storage. World Scientific Series on Carbon Nanoscience, 2014, , 51-82.	0.1	2
276	Magnetic Nanomaterials for Electromagnetic Wave Absorption. , 2017, , 473-514.		2
277	Magnetic Nanomaterials for Therapy. , 0, , 393-438.		2
278	Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Metals, 2017, 36, 305-306.	3.6	2
279	Large-Scale High-Yield Synthesis of PdCu@Au Tripods and the Quantification of their Luminescence Properties for Cancer Cell Imaging. Journal of Nano Research, 2017, 49, 85-97.	0.8	2
280	Sodiumâ€lon Batteries: Ostwald Ripening Tailoring Hierarchically Porous Na ₃ V ₂ (PO ₄) ₂ O ₂ F Hollow Nanospheres for Superior Highâ€Rate and Ultrastable Sodium Ion Storage (Small 48/2020). Small, 2020, 16, 2070263.	5.2	2
281	Design of Magnetic Nanoparticles for MRI-Based Theranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 3-37.	0.7	1
282	Overview of Magnetic Nanomaterials. , 2017, , 1-28.		1
283	Magnetic Nanomaterials for Diagnostics. , 0, , 365-392.		1
284	Synthesis and Properties of Magnetic Chalcogenide Nanostructures. , 2017, , 191-216.		1
285	Wet-Phase Synthesis of Typical Magnetic Nanoparticles with Controlled Morphologies. , 2017, , 291-326.		1
286	Nanoparticles: Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic-Magnetic Ag-Fe@Fe3 O4 Heterostructures with Reduced Cytotoxicity (Adv. Sci. 8/2018). Advanced Science, 2018, 5, 1870049.	5.6	1
287	Effective enhancement of piezomagnetic effect in core/shell structured cobalt/manganese-zinc nanocomposite. Applied Materials Today, 2020, 21, 100834.	2.3	1
288	First-order-reversal-curve analysis of rare earth permanent magnet nanostructures: insight into the coercivity enhancement mechanism through regulating the Nd-rich phase. Inorganic Chemistry Frontiers, 2021, 8, 1975-1982.	3.0	1

#	Article	IF	CITATIONS
289	Spin quantum well-like behavior in single-crystal Gd0.75La0.25FeO3. Science China Materials, 2021, 64, 531-536.	3.5	1
290	Back Cover: Selfâ€assembled magnetic nanomaterials: Versatile theranostics nanoplatforms for cancer. Aggregate, 2021, 2, e55.	5.2	1
291	Magnetic Nanoparticles: Chemical Synthesis, Functionalization and Biomedical Applications. Acta Agronomica Sinica(China), 2013, 40, 903.	0.1	1
292	Magnetic Properties and Fabrication of Monodisperse FePd Nanoparticles. Materials Research Society Symposia Proceedings, 2004, 818, 206.	0.1	0
293	Selected Peer-Reviewed Articles from E-MRS Symposium on Size-Dependent Properties of Nanomaterials. Journal of Nanoscience and Nanotechnology, 2012, 12, 8526-8527.	0.9	0
294	<i>A Special Section on</i> Magnetism at Nanoscale (IUMRS-ICA2010). Journal of Nanoscience and Nanotechnology, 2012, 12, 1004-1005.	0.9	0
295	Photothermal Therapy: Multifunctional Fe5C2Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy (Adv.) Tj ETQq1 1	0.78 4.3 14	rgBð /Overloo
296	Multifunctional metal rattle-type nanocarriers for MRI-guided photothermal cancer therapy. Proceedings of SPIE, 2015, , .	0.8	0
297	Lithium-Sulfur Batteries: 3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
298	Energy Storage: Integrated Design of MnO ₂ @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries (Small 20/2017). Small, 2017, 13, .	5.2	0
299	Self-Assembly of Co Nanocrystals Self-Assembled in 2D and 3D Superlattices. , 2017, , 327-342.		0
300	Magnetic Nanoparticles for Bioseparation, Biosensing, and Regenerative Medicine. , 2017, , 343-364.		0
301	Magnetism of Nanomaterials. , 2017, , 29-80.		0
302	Overview of Synthesis of Magnetic Nanomaterials. , 2017, , 81-120.		0
303	Synthesis of Soft Magnetic Nanomaterials and Alloys. , 2017, , 121-146.		0
304	Synthesis of Nanostructured Rare-Earth Permanent Magnets. , 2017, , 147-174.		0
305	Synthesis of Rare Earth Free Permanent Magnets. , 2017, , 175-190.		0
306	Magnetic Multicomponent Heterostructured Nanocrystals. , 2017, , 217-290.		0