Eva Epelde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458070/publications.pdf

Version: 2024-02-01

		687363 839539	
18	722	13	18
papers	citations	h-index	g-index
18	18	18	585
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Differences among the deactivation pathway of HZSM-5 zeolite and SAPO-34 in the transformation of ethylene or 1-butene to propylene. Microporous and Mesoporous Materials, 2014, 195, 284-293.	4.4	126
2	Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chemical Engineering Journal, 2014, 251, 80-91.	12.7	89
3	Converting olefins to propene: Ethene to propene and olefin cracking. Catalysis Reviews - Science and Engineering, 2018, 60, 278-335.	12.9	82
4	Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Applied Catalysis B: Environmental, 2021, 291, 120076.	20.2	65
5	Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications. Catalysis Today, 2020, 348, 243-256.	4.4	59
6	Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification. Applied Catalysis A: General, 2015, 505, 105-115.	4.3	45
7	Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. Applied Catalysis A: General, 2014, 479, 17-25.	4.3	39
8	Spatial Distribution of Zeolite ZSMâ€5 within Catalyst Bodies Affects Selectivity and Stability of Methanolâ€toâ€Hydrocarbons Conversion. ChemCatChem, 2013, 5, 2827-2831.	3.7	38
9	Kinetic Model for the Transformation of 1-Butene on a K-Modified HZSM-5 Catalyst. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 10599-10607.	3.7	34
10	Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. Industrial & Degree Engineering Chemistry Research, 2014, 53, 4614-4622.	3.7	32
11	Selective dealumination of HZSM-5 zeolite boosts propylene by modifying 1-butene cracking pathway. Applied Catalysis A: General, 2017, 543, 1-9.	4.3	30
12	SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene. Applied Catalysis A: General, 2017, 547, 176-182.	4.3	20
13	Operating conditions to maximize clean liquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolite catalysts. Energy, 2020, 207, 118317.	8.8	13
14	Lessening coke formation and boosting gasoline yield by incorporating scrap tire pyrolysis oil in the cracking conditions of an FCC unit. Energy Conversion and Management, 2020, 224, 113327.	9.2	13
15	Quenching the Deactivation in the Methanol-to-Olefin Reaction by Using Tandem Fixed-Beds of ZSM-5 and SAPO-18 Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 13892-13905.	3.7	12
16	Aluminum extraction from a metallurgical industry sludge and its application as adsorbent. Journal of Cleaner Production, 2021, 310, 127374.	9.3	11
17	Low-pressure oligomerization of 1-butene to liquid fuels on HZSM-5 zeolite catalysts: Effect of operating conditions. Journal of Industrial and Engineering Chemistry, 2020, 87, 234-241.	5.8	9
18	Fuel production via catalytic cracking of pre-hydrotreated heavy-fuel oil generated by marine-transport operations. Fuel, 2022, 325, 124765.	6.4	5