Satoshi Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458000/publications.pdf

Version: 2024-02-01

109321 168389 4,104 167 35 53 citations h-index g-index papers 168 168 168 4295 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of Arctigenin as an Antitumor Agent Having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation. Cancer Research, 2006, 66, 1751-1757.	0.9	301
2	Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship. Bioorganic and Medicinal Chemistry, 2008, 16, 5434-5440.	3.0	134
3	Pancreatic anticancer activity of a novel geranylgeranylated coumarin derivative. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5770-5773.	2.2	103
4	Kinetic studies of AKR1B10, human aldose reductase-like protein: Endogenous substrates and inhibition by steroids. Archives of Biochemistry and Biophysics, 2009, 487, 1-9.	3.0	94
5	Angelmarin, a novel anti-cancer agent able to eliminate the tolerance of cancer cells to nutrient starvation. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 581-583.	2.2	93
6	Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-Biological Interactions, 2013, 202, 234-242.	4.0	85
7	Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients, 2015, 7, 4578-4592.	4.1	79
8	Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Frontiers in Pharmacology, 2012, 3, 5.	3.5	78
9	Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2079-2088.	4.1	70
10	Chemical Constituents of Propolis from Myanmar and Their Preferential Cytotoxicity against a Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2009, 72, 1283-1287.	3.0	68
11	Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorganic and Medicinal Chemistry, 2010, 18, 2485-2490.	3.0	66
12	Ancistrolikokine E ₃ , a 5,8′-Coupled Naphthylisoquinoline Alkaloid, Eliminates the Tolerance of Cancer Cells to Nutrition Starvation by Inhibition of the Akt/mTOR/Autophagy Signaling Pathway. Journal of Natural Products, 2018, 81, 2282-2291.	3.0	64
13	A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncology Reports, 2013, 30, 2357-2364.	2.6	58
14	Roles of rat and human aldo–keto reductases in metabolism of farnesol and geranylgeraniol. Chemico-Biological Interactions, 2011, 191, 261-268.	4.0	57
15	Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients, 2017, 9, 597.	4.1	57
16	Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. Journal of Organic Chemistry, 2018, 83, 1988-1996.	3.2	57
17	Selective Inhibition of the Tumor Marker Aldo-keto Reductase Family Member 1B10 by Oleanolic Acid. Journal of Natural Products, 2011, 74, 1201-1206.	3.0	56
18	Potent and selective inhibition of the tumor marker AKR1B10 by bisdemethoxycurcumin: Probing the active site of the enzyme with molecular modeling and site-directed mutagenesis. Biochemical and Biophysical Research Communications, 2009, 389, 128-132.	2.1	54

#	Article	IF	Citations
19	Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo–keto reductase 1B10. European Journal of Medicinal Chemistry, 2012, 48, 321-329.	5.5	51
20	Selective Inhibition of the Tumor Marker AKR1B10 by Antiinflammatory N-Phenylanthranilic Acids and Glycyrrhetic Acid. Biological and Pharmaceutical Bulletin, 2010, 33, 886-890.	1.4	48
21	Characterization of human DHRS4: An inducible short-chain dehydrogenase/reductase enzyme with 3β-hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2008, 477, 339-347.	3.0	46
22	Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(<scp>ii</scp>) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Transactions, 2020, 49, 9411-9424.	3.3	46
23	Constituents of the Rhizomes of <i>Boesenbergia pandurata</i> and Their Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Line. Journal of Natural Products, 2017, 80, 141-148.	3.0	44
24	Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2017, 80, 2345-2352.	3.0	44
25	Selective Inhibition of Human Type-5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) by Baccharin, a Component of Brazilian Propolis. Journal of Natural Products, 2012, 75, 716-721.	3.0	43
26	Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 293-302.	4.1	43
27	Novel anticancer agents, kayeassamins A and B from the flower of Kayea assamica of Myanmar. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4688-4691.	2.2	41
28	Antiausterity Agents from Uvaria dac and Their Preferential Cytotoxic Activity against Human Pancreatic Cancer Cell Lines in a Nutrient-Deprived Condition. Journal of Natural Products, 2012, 75, 1177-1183.	3.0	41
29	Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1170-1178.	4.1	41
30	Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy. European Journal of Medicinal Chemistry, 2013, 60, 76-88.	5.5	40
31	Chemical Constituents of <i>Mangifera indica</i> and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2016, 79, 2053-2059.	3.0	40
32	Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells. Chemico-Biological Interactions, 2009, 181, 52-60.	4.0	39
33	Structure-Guided Design, Synthesis, and Evaluation of Salicylic Acid-Based Inhibitors Targeting a Selectivity Pocket in the Active Site of Human 20α-Hydroxysteroid Dehydrogenase (AKR1C1). Journal of Medicinal Chemistry, 2009, 52, 3259-3264.	6.4	39
34	Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anti-Cancer Drugs, 2011, 22, 402-408.	1.4	37
35	Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochemical and Biophysical Research Communications, 2018, 497, 437-443.	2.1	37
36	Cleistanthane diterpenes from the seed of Caesalpinia sappan and their antiausterity activity against PANC-1 human pancreatic cancer cell line. FìtoterapìA¢, 2013, 91, 148-153.	2.2	36

3

#	Article	IF	CITATIONS
37	Cassane diterpenes from the seed kernels of Caesalpinia sappan. Phytochemistry, 2016, 122, 286-293.	2.9	36
38	Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. Journal of Biological Chemistry, 2017, 292, 2411-2421.	3.4	36
39	The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites, 2021, 11, 332.	2.9	35
40	Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo–keto reductase 1B10. Chemico-Biological Interactions, 2015, 230, 30-39.	4.0	34
41	A Salicylic Acid-Based Analogue Discovered from Virtual Screening as a Potent Inhibitor of Human 20& 20% amp; #945; -Hydroxysteroid Dehydrogenase. Medicinal Chemistry, 2007, 3, 546-550.	1.5	33
42	Structure–activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fìtoterapìâ, 2015, 101, 51-56.	2.2	33
43	Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase. Biochemical and Biophysical Research Communications, 2008, 377, 1326-1330.	2.1	32
44	Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radical Research, 2014, 48, 1371-1385.	3.3	32
45	Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2020, 63, 10396-10411.	6.4	32
46	Induction of aldo-keto reductases (AKR1C1 and AKR1C3) abolishes the efficacy of daunorubicin chemotherapy for leukemic U937 cells. Anti-Cancer Drugs, 2014, 25, 868-877.	1.4	31
47	Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 24787-24799.	3.4	31
48	Michellamines A ₆ and A ₇ , and further mono- and dimeric naphthylisoquinoline alkaloids from a Congolese <i>Ancistrocladus</i> liana and their antiausterity activities against pancreatic cancer cells. RSC Advances, 2018, 8, 5243-5254.	3 . 6	30
49	Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-Î ³ -dependent mechanism. Chemico-Biological Interactions, 2016, 256, 142-153.	4.0	29
50	\hat{l}_{\pm} -Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology, 2017, 386, 93-102.	4.2	29
51	Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 8441-8455.	6.4	27
52	Selectivity Determinants of Inhibitor Binding to Human 20α-Hydroxysteroid Dehydrogenase: Crystal Structure of the Enzyme in Ternary Complex with Coenzyme and the Potent Inhibitor 3,5-Dichlorosalicylic Acid. Journal of Medicinal Chemistry, 2008, 51, 4844-4848.	6.4	26
53	Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1810. Toxicology and Applied Pharmacology, 2014, 278, 180-189.	2.8	25
54	Effects of ligand binding on the stability of aldo–keto reductases: Implications for stabilizer or destabilizer chaperones. Protein Science, 2016, 25, 2132-2141.	7.6	24

#	Article	IF	Citations
55	Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2902-2906.	2.2	24
56	Ancistrolikokines E–H and related 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana <i>Ancistrocladus likoko</i> with antiausterity activities against PANC-1 human pancreatic cancer cells. RSC Advances, 2017, 7, 53740-53751.	3.6	24
57	Ancistroyafungines A-D, $5,8\hat{a}\in^2$ - and $5,1\hat{a}\in^2$ -coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fìtoterapìâ, 2018, 130, 6-16.	2.2	24
58	Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Scientific Reports, 2019, 9, 13753.	3.3	24
59	Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells' tolerance to nutrition starvation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1779-1784.	2.2	24
60	Properties and tissue distribution of a novel aldo–keto reductase encoding in a rat gene (Akr1b10). Archives of Biochemistry and Biophysics, 2010, 503, 230-237.	3.0	23
61	Synthesis and structure–activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo–keto reductase (AKR) 1B10. Bioorganic and Medicinal Chemistry, 2013, 21, 6378-6384.	3.0	23
62	Human dehydrogenase/reductase (SDR family) member 11 is a novel type of $17\hat{1}^2$ -hydroxysteroid dehydrogenase. Biochemical and Biophysical Research Communications, 2016, 472, 231-236.	2.1	23
63	Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 769-780.	4.1	23
64	Enzymatic characteristics of an aldo–keto reductase family protein (AKR1C15) and its localization in rat tissues. Archives of Biochemistry and Biophysics, 2007, 465, 136-147.	3.0	22
65	Characterization of a rat NADPH-dependent aldo-keto reductase (AKR1B13) induced by oxidative stress. Chemico-Biological Interactions, 2009, 178, 151-157.	4.0	21
66	Structure-based optimization and biological evaluation of human 20α-hydroxysteroid dehydrogenase (AKR1C1) salicylic acid-based inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 5309-5317.	5 . 5	21
67	The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells. Journal of Biological Chemistry, 2017, 292, 13034-13044.	3.4	21
68	Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anti-Cancer Drugs, 2019, 30, 251-259.	1.4	21
69	Correlation of binding constants and molecular modelling of inhibitors in the active sites of aldose reductase and aldehyde reductase. Bioorganic and Medicinal Chemistry, 2009, 17, 1244-1250.	3.0	20
70	Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 470-479.	4.1	20
71	Uvaridacols E–H, Highly Oxygenated Antiausterity Agents from <i>Uvaria dac</i> . Journal of Natural Products, 2012, 75, 1999-2002.	3.0	19
72	Tight Junctional Localization of Claudin-16 Is Regulated by Syntaxin 8 in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 13112-13123.	3.4	19

#	Article	IF	Citations
73	Up-Regulation of Carbonyl Reductase 1 Renders Development of Doxorubicin Resistance in Human Gastrointestinal Cancers. Biological and Pharmaceutical Bulletin, 2015, 38, 1309-1319.	1.4	19
74	Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. Journal of Nutritional Biochemistry, 2018, 56, 205-214.	4.2	19
75	Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8. Chemico-Biological Interactions, 2009, 178, 117-126.	4.0	18
76	Synthesis of non-prenyl analogues of baccharin as selective and potent inhibitors for aldo-keto reductase 1C3. Bioorganic and Medicinal Chemistry, 2014, 22, 5220-5233.	3.0	18
77	Molecular determinants for the stereospecific reduction of 3-ketosteroids and reactivity towards all-trans-retinal of a short-chain dehydrogenase/reductase (DHRS4). Archives of Biochemistry and Biophysics, 2009, 481, 183-190.	3.0	17
78	Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients, 2020, 12, 1190.	4.1	17
79	Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening. European Journal of Medicinal Chemistry, 2010, 45, 4354-4357.	5.5	16
80	Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chemico-Biological Interactions, 2019, 314, 108839.	4.0	16
81	Inhibition of Human Aldose Reductase-Like Protein (AKR1B10) by α- and γ-Mangostins, Major Components of Pericarps of Mangosteen. Biological and Pharmaceutical Bulletin, 2012, 35, 2075-2080.	1.4	15
82	Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Organic and Biomolecular Chemistry, 2015, 13, 7487-7499.	2.8	15
83	Highly oxygenated antiausterity agents from the leaves of Uvaria dac. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1967-1971.	2.2	15
84	Characterization of an Oligomeric Carbonyl Reductase of Dog Liver: Its Identity with Peroxisomal Tetrameric Carbonyl Reductase. Biological and Pharmaceutical Bulletin, 2007, 30, 1787-1791.	1.4	14
85	Structure of aldehyde reductase in ternary complex with coenzyme and the potent 20α-hydroxysteroid dehydrogenase inhibitor 3,5-dichlorosalicylic acid: Implications for inhibitor binding and selectivity. Archives of Biochemistry and Biophysics, 2008, 479, 82-87.	3.0	14
86	Rat Aldose Reductase-Like Protein (AKR1B14) Efficiently Reduces the Lipid Peroxidation Product 4-Oxo-2-nonenal. Biological and Pharmaceutical Bulletin, 2010, 33, 1886-1890.	1.4	14
87	Nitric oxide mitigates apoptosis in human endothelial cells induced by 9,10-phenanthrenequinone: Role of proteasomal function. Toxicology, 2010, 268, 191-197.	4.2	14
88	9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant. Cell and Tissue Research, 2012, 347, 407-417.	2.9	14
89	Chlorpheniramine Increases Paracellular Permeability to Marker Fluorescein Lucifer Yellow Mediated by Internalization of Occludin in Murine Colonic Epithelial Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 1299-1305.	1.4	14
90	Targeting Nrf2-antioxidant signalling reverses acquired cabazitaxel resistance in prostate cancer cells. Journal of Biochemistry, 2021, 170, 89-96.	1.7	14

#	Article	IF	Citations
91	Enzymatic Properties of a Member (AKR1C20) of the Aldo-Keto Reductase Family. Biological and Pharmaceutical Bulletin, 2006, 29, 539-542.	1.4	13
92	Anti-Austerity Agents from Rhizoma et Radix Notopterygii (Qianghuo). Planta Medica, 2012, 78, 796-799.	1.3	13
93	Reduction of Cytotoxic p-Quinone Metabolites of tert-Butylhydroquinone by Human Aldo-keto Reductase (AKR) 1B10. Drug Metabolism and Pharmacokinetics, 2012, 27, 553-558.	2.2	13
94	Cloning and Characterization of Four Rabbit Aldo-Keto Reductases Featuring Broad Substrate Specificity for Xenobiotic and Endogenous Carbonyl Compounds: Relationship with Multiple Forms of Drug Ketone Reductases. Drug Metabolism and Disposition, 2014, 42, 803-812.	3.3	13
95	Structure-activity relationship for toxicity of \hat{l}_{\pm} -pyrrolidinophenones in human aortic endothelial cells. Forensic Toxicology, 2017, 35, 309-316.	2.4	13
96	Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochemical Pharmacology, 2017, 138, 185-192.	4.4	13
97	Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Scientific Reports, 2018, 8, 15157.	3.3	13
98	Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: Substrate and reaction specificity in the reduction of 11-keto-C19-steroids. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105586.	2.5	13
99	Significance of aldo-keto reductase 1C3 and ATP-binding cassette transporter B1 in gain of irinotecan resistance in colon cancer cells. Chemico-Biological Interactions, 2020, 332, 109295.	4.0	13
100	Inhibition of $3(17)\hat{l}_{\pm}$ -hydroxysteroid dehydrogenase (AKR1C21) by aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 3245-3254.	3.0	12
101	Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCÎ ² -Dependent GATA-2 in MDCK Cells. Journal of Cellular Physiology, 2015, 230, 2776-2787.	4.1	12
102	Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radical Research, 2016, 50, 1296-1308.	3.3	12
103	Up-regulation of claudin-2 expression by aldosterone in colonic epithelial cells of mice fed with NaCl-depleted diets. Scientific Reports, 2017, 7, 12223.	3.3	12
104	Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118642.	4.1	12
105	Sidechain Diversification of Grandifloracin Allows Identification of Analogues with Enhanced Antiâ€Austerity Activity against Human PANC†Pancreatic Cancer Cells. ChemMedChem, 2020, 15, 125-135.	3.2	12
106	Structures of dimeric dihydrodiol dehydrogenase apoenzyme and inhibitor complex: Probing the subunit interface with siteâ€directed mutagenesis. Proteins: Structure, Function and Bioinformatics, 2008, 70, 176-187.	2.6	11
107	Design, synthesis, and biological evaluation of novel (1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acids as selective inhibitors for AKR1B1. Bioorganic and Medicinal Chemistry, 2012, 20, 356-367.	3.0	11
108	Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. Journal of Biochemistry, 2017, 162, 371-379.	1.7	11

#	Article	IF	CITATIONS
109	Flavonol glycosides of Rosa multiflora regulates intestinal barrier function through inhibiting claudin expression in differentiated Caco-2 cells. Nutrition Research, 2019, 72, 92-104.	2.9	11
110	Polymorphisms in androgen metabolism genes with serum testosterone levels and prognosis in androgen-deprivation therapy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 849.e11-849.e18.	1.6	11
111	Substrate Specificity of a Mouse Aldo-Keto Reductase (AKR1C12). Biological and Pharmaceutical Bulletin, 2006, 29, 2488-2492.	1.4	10
112	Rat NAD+-dependent 3α-hydroxysteroid dehydrogenase (AKR1C17): A member of the aldo-keto reductase family highly expressed in kidney cytosol. Archives of Biochemistry and Biophysics, 2007, 464, 122-129.	3.0	10
113	Characterization of rat and mouse NAD+-dependent $3\hat{l}\pm/17\hat{l}^2/20\hat{l}\pm$ -hydroxysteroid dehydrogenases and identification of substrate specificity determinants by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2007, 467, 76-86.	3.0	10
114	Characterization of rabbit aldose reductase-like protein with $3\hat{l}^2$ -hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2012, 527, 23-30.	3.0	10
115	Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. European Journal of Pharmacology, 2018, 841, 113-121.	3.5	10
116	Characterization of rabbit morphine 6-dehydrogenase and two NAD+-dependent $3\hat{l}\pm(17\hat{l}^2)$ -hydroxysteroid dehydrogenases. Archives of Biochemistry and Biophysics, 2013, 529, 131-139.	3.0	9
117	Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2326-2336.	2.6	9
118	Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. International Journal of Molecular Sciences, 2021, 22, 6582.	4.1	9
119	Aldo-keto reductase 1C15 as a quinone reductase in rat endothelial cell: Its involvement in redox cycling of 9,10-phenanthrenequinone. Free Radical Research, 2011, 45, 848-857.	3.3	8
120	Probing the inhibitor selectivity pocket of human 20α-hydroxysteroid dehydrogenase (AKR1C1) with X-ray crystallography and site-directed mutagenesis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2564-2567.	2.2	8
121	Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chemico-Biological Interactions, 2018, 279, 10-20.	4.0	8
122	Sodium Citrate Increases Expression and Flux of Mg2+ Transport Carriers Mediated by Activation of MEK/ERK/c-Fos Pathway in Renal Tubular Epithelial Cells. Nutrients, 2018, 10, 1345.	4.1	8
123	Structure of $3(17)\hat{l}$ ±-hydroxysteroid dehydrogenase (AKR1C21) holoenzyme from an orthorhombic crystal form: an insight into the bifunctionality of the enzyme. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 825-830.	0.7	7
124	Structure/function analysis of a critical disulfide bond in the active site of l-xylulose reductase. Cellular and Molecular Life Sciences, 2009, 66, 1570-1579.	5.4	7
125	Protective effect of rat aldo-keto reductase (AKR1C15) on endothelial cell damage elicited by 4-hydroxy-2-nonenal. Chemico-Biological Interactions, 2011, 191, 364-370.	4.0	7
126	Structure of rat aldose reductase-like protein AKR1B14 holoenzyme: Probing the role of His269 in coenzyme binding by site-directed mutagenesis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 801-804.	2.2	7

#	Article	IF	CITATIONS
127	9,10-Phenanthrenequinone Induces Monocytic Differentiation of U937 Cells through Regulating Expression of Aldo-Keto Reductase 1C3. Biological and Pharmaceutical Bulletin, 2012, 35, 1598-1602.	1.4	7
128	Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D2, and other endogenous and xenobiotic carbonyl compounds. Biochemical Pharmacology, 2013, 86, 1366-1375.	4.4	7
129	Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids. Archives of Biochemistry and Biophysics, 2016, 609, 69-76.	3.0	7
130	Instability of C154Y variant of aldo-keto reductase 1C3. Chemico-Biological Interactions, 2017, 276, 194-202.	4.0	7
131	ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 247-254.	1.4	7
132	Synthesis of guggulsterone derivatives as potential anti-austerity agents against PANC-1 human pancreatic cancer cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126964.	2.2	7
133	Activation of aldo-keto reductase family member 1B14 (AKR1B14) by bile acids: Activation mechanism and bile acid-binding site. Biochimie, 2011, 93, 1476-1486.	2.6	6
134	Substrate Specificity and Inhibitor Sensitivity of Rabbit $20\hat{l}_{\pm}$ -Hydroxysteroid Dehydrogenase. Biological and Pharmaceutical Bulletin, 2013, 36, 1514-1518.	1.4	6
135	Protective roles of aldo-keto reductase 1B10 and autophagy against toxicity induced by p-quinone metabolites of tert-butylhydroquinone in lung cancer A549 cells. Chemico-Biological Interactions, 2015, 234, 282-289.	4.0	6
136	Upâ€Regulation of Transient Receptor Potential Melastatin 6 Channel Expression by Tumor Necrosis Factorâ€Î± in the Presence of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Journal of Cellular Physiology, 2017, 232, 2841-2850.	4.1	6
137	Rabbit dehydrogenase/reductase SDR family member 11 (DHRS11): Its identity with acetohexamide reductase with broad substrate specificity and inhibitor sensitivity, different from human DHRS11. Chemico-Biological Interactions, 2019, 305, 12-20.	4.0	6
138	Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2020, 21, 5909.	4.1	6
139	9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology, 2021, 461, 152896.	4.2	6
140	Factorizing the role of a critical leucine residue in the binding of substrate to human 201±-hydroxysteroid dehydrogenase (AKR1C1): Molecular modeling and kinetic studies of the Leu308Val mutant enzyme. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5274-5276.	2.2	5
141	Dimeric Crystal Structure of Rabbit l-Gulonate 3-Dehydrogenaselî»-Crystallin: Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2010, 401, 906-920.	4.2	5
142	Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Scientific Reports, 2019, 9, 9647.	3.3	5
143	Molecular Characterization and Mutational Analysis of Recombinant Diadenosine 5′,5″-P ¹ ,P ⁴ -Tetraphosphate Hydrolase from <i>Plasmodium falciparum</i> Biological and Pharmaceutical Bulletin, 2012, 35, 1191-1196.	1.4	4
144	Enhancement of Endothelial Barrier Permeability by Mitragynine. Biological and Pharmaceutical Bulletin, 2017, 40, 1779-1783.	1.4	4

#	Article	IF	CITATIONS
145	Novel Atg4B inhibitors potentiate cisplatin therapy in lung cancer cells through blockade of autophagy. Computational Toxicology, 2019, 12, 100095.	3.3	4
146	Upregulation of transient receptor potential melastatin 6 channel expression by rosiglitazone and allâ€transâ€retinoic acid in erlotinibâ€treated renal tubular epithelial cells. Journal of Cellular Physiology, 2019, 234, 8951-8962.	4.1	4
147	Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2Âcells. Chemico-Biological Interactions, 2021, 348, 109634.	4.0	4
148	Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis and proteasomal proteolysis. Journal of Biochemistry, 2022, 171, 97-108.	1.7	4
149	Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 4878-4892.	6.4	4
150	Structure of the G225P/G226P mutant of mouse 3(17)α-hydroxysteroid dehydrogenase (AKR1C21) ternary complex: implications for the binding of inhibitor and substrate. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 257-265.	2.5	3
151	Crystallization and preliminary X-ray analysis of a rat aldose reductase-like protein (AKR1B14). Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 395-397.	0.7	3
152	Studies on a Tyr residue critical for the binding of coenzyme and substrate in mouse $3(17)\hat{1}\pm$ -hydroxysteroid dehydrogenase (AKR1C21): structure of the Y224D mutant enzyme. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 198-204.	2.5	3
153	Evaluation of compound selectivity of aldo-keto reductases using differential scanning fluorimetry. Journal of Biochemistry, 2016, 161, mvw063.	1.7	3
154	Modulation of activity and inhibitor sensitivity of rabbit aldose reductase-like protein (AKR1B19) by oxidized glutathione and SH-reagents. Chemico-Biological Interactions, 2013, 202, 146-152.	4.0	2
155	Characterization of hamster NAD $<$ sup $>+sup>-dependent 3(17)\hat{i}^2-hydroxysteroid dehydrogenase belonging to the aldo-keto reductase 1C subfamily. Journal of Biochemistry, 2015, 158, 425-434.$	1.7	2
156	Mouse Akr1cl gene product is a prostaglandin D2 11-ketoreductase with strict substrate specificity. Archives of Biochemistry and Biophysics, 2019, 674, 108096.	3.0	2
157	Protective Effect of Aldo–keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4′-Fluoro-α-pyrrolidinononanophenone. Neurotoxicity Research, 2021, 39, 1360-1371.	2.7	2
158	Aldo-keto reductase inhibitors increase the anticancer effects of tyrosine kinase inhibitors in chronic myelogenous leukemia. Journal of Pharmacological Sciences, 2021, 147, 1-8.	2.5	2
159	Bombyx mori-derived aldo-keto reductase AKR2E8 detoxifies aldehydes present in mulberry leaves. Chemico-Biological Interactions, 2022, 351, 109717.	4.0	2
160	Porcine aldo-keto reductase 1C subfamily members AKR1C1 and AKR1C4: Substrate specificity, inhibitor sensitivity and activators. Journal of Steroid Biochemistry and Molecular Biology, 2022, 221, 106113.	2.5	2
161	Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression. International Journal of Molecular Sciences, 2022, 23, 7536.	4.1	2
162	Crystallization and preliminary X-ray crystallographic analysis of rabbitL-gulonate 3-dehydrogenase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 228-230.	0.7	1

#	Article	IF	CITATIONS
163	Structure of the His269Arg mutant of the rat aldose reductase-like protein AKR1B14 complexed with NADPH. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 400-403.	0.7	1
164	Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo–keto reductase 1C33 by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2015, 569, 19-25.	3.0	1
165	Characterization of aldo-keto reductase 1C subfamily members encoded in two rat genes (akr1c19 and) Tj ETQq1		14 rgBT /Ov
165	Biophysics, 2021, 700, 108755.	3.0	1
166	Probing AKR1C30 and AKR1C31 with Site-Directed Mutagenesis: Identifying the Roles of Residues 54 and 56 in the Binding of Substrates and Inhibitors. Biological and Pharmaceutical Bulletin, 2014, 37, 1848-1852.	1.4	0
167	Dimeric dihydrodiol dehydrogenase is an efficient primate 1,5-anhydro-D-fructose reductase. Biochemical and Biophysical Research Communications, 2020, 526, 728-732.	2.1	O