Zdenek Becvar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/74580/publications.pdf

Version: 2024-02-01

98 papers 3,653 citations

16 h-index

42 g-index

100 all docs

 $\begin{array}{c} 100 \\ \\ \text{docs citations} \end{array}$

100 times ranked

3943 citing authors

#	Article	IF	CITATIONS
1	Power Allocation, Channel Reuse, and Positioning of Flying Base Stations With Realistic Backhaul. IEEE Internet of Things Journal, 2022, 9, 1790-1805.	5.5	4
2	Optimal Positioning of Flying Base Stations and Transmission Power Allocation in NOMA Networks. IEEE Transactions on Wireless Communications, 2022, 21, 1319-1334.	6.1	17
3	Optimization of Total Power Consumed by Flying Base Station Serving Mobile Users. IEEE Transactions on Network Science and Engineering, 2022, 9, 2815-2832.	4.1	7
4	Device-to-Device Relaying: Optimization, Performance Perspectives, and Open Challenges Towards 6G Networks. IEEE Communications Surveys and Tutorials, 2022, 24, 1336-1393.	24.8	19
5	Reducing Storage and Communication Latencies in Vehicular Edge Cloud. , 2022, , .		O
6	Soft Frequency Reuse With Allocation of Resource Plans Based on Machine Learning in the Networks With Flying Base Stations. IEEE Access, 2021, 9, 104887-104903.	2.6	6
7	Incentive-Based D2D Relaying in Cellular Networks. IEEE Transactions on Communications, 2021, 69, 1775-1788.	4.9	7
8	Optimization of Cell Individual Offset for Handover of Flying Base Station. , 2021, , .		6
9	Positioning and Association Rules for Transparent Flying Relay Stations. IEEE Wireless Communications Letters, 2021, 10, 1276-1280.	3.2	8
10	Dynamic Allocation of Computing and Communication Resources in Multi-Access Edge Computing for Mobile Users. IEEE Transactions on Network and Service Management, 2021, 18, 2089-2106.	3.2	22
11	Reuse of Multiple Channels by Multiple D2D Pairs in Dedicated Mode: A Game Theoretic Approach. IEEE Transactions on Wireless Communications, 2021, 20, 4313-4327.	6.1	5
12	Dynamic Adjustment of Scheduling Period in Mobile Networks Based on C-RAN., 2021,,.		O
13	PADSA: Priority-Aware Block Data Storage Architecture for Edge Cloud Serving Autonomous Vehicles. , 2021, , .		1
14	6G in the sky: Onâ€demand intelligence at the edge of 3D networks (Invited paper). ETRI Journal, 2020, 42, 643-657.	1.2	23
15	Flexible Soft Frequency Reuse for Interference Management in the Networks with Flying Base Stations. , 2020, , .		3
16	Sequential Bargaining Game for Reuse of Radio Resources in D2D Communication in Dedicated Mode. , 2020, , .		3
17	Optimizing Transmission and Propulsion Powers for Flying Base Stations. , 2020, , .		6
18	Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach. IEEE Transactions on Wireless Communications, 2020, 19, 7124-7138.	6.1	15

#	Article	IF	CITATIONS
19	Energy Consumption Performance of Opportunistic Device-to-Device Relaying Under Log-Normal Shadowing. IEEE Systems Journal, 2020, , 1-12.	2.9	3
20	Integrating UAVs as Transparent Relays into Mobile Networks: A Deep Learning Approach., 2020,,.		1
21	Reducing Energy Consumed by Repositioning of Flying Base Stations Serving Mobile Users. , 2020, , .		4
22	Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication. IEEE Wireless Communications Letters, 2020, 9, 1763-1767.	3.2	16
23	Mobility management for D2D communication combining radio frequency and visible light communications bands. Wireless Networks, 2020, 26, 5473-5484.	2.0	9
24	Energy Efficient Positioning of Flying Base Stations via Coulomb's law. , 2020, , .		1
25	Low-Complexity Iterative Soft-output Demodulation for Hierarchical Quadrature Amplitude Modulation. , 2020, , .		0
26	Optimization of Transmission Power for NOMA in Networks with Flying Base Stations. , 2020, , .		3
27	Joint Association, Transmission Power Allocation and Positioning of Flying Base Stations Considering Limited Backhaul., 2020, , .		2
28	Positioning of Flying Base Stations to Optimize Throughput and Energy Consumption of Mobile Devices. , $2019, \ldots$		13
29	Resource Allocation for D2D Communication With Multiple D2D Pairs Reusing Multiple Channels. IEEE Wireless Communications Letters, 2019, 8, 1008-1011.	3.2	31
30	Two-Phase Random Access Procedure for LTE-A Networks. IEEE Transactions on Wireless Communications, 2019, 18, 2374-2387.	6.1	12
31	Machine Learning for Power Control in D2D Communication Based on Cellular Channel Gains. , 2019, ,		11
32	Incentive Mechanism and Relay Selection for D2D Relaying in Cellular Networks. , 2019, , .		4
33	Nash Bargaining Solution for Cooperative Relaying Exploiting Energy Consumption., 2019,,.		1
34	Efficient Exploitation of Radio Frequency and Visible Light Communication Bands for D2D in Mobile Networks. IEEE Access, 2019, 7, 168922-168933.	2.6	9
35	Joint Positioning of UAV and Power Control for Flying Base Stations in Mobile Networks. , 2019, , .		11
36	Joint Positioning of Flying Base Stations and Association of Users: Evolutionary-Based Approach. IEEE Access, 2019, 7, 11454-11463.	2.6	59

#	Article	IF	CITATIONS
37	Modeling of Distributed Queueing-Based Random Access for Machine Type Communications in Mobile Networks. IEEE Communications Letters, 2018, 22, 129-132.	2.5	16
38	Adaptive Hysteresis Margin Based on Fuzzy Logic for Handover in Mobile Networks With Dense Small Cells. IEEE Access, 2018, 6, 17178-17189.	2.6	59
39	Vehicular Network-Aware Route Selection Considering Communication Requirements of Users for ITS. IEEE Systems Journal, 2018, 12, 1239-1250.	2.9	11
40	Hybrid spectrum sharing for cognitive small cells. , 2018, , .		0
41	Self-tuning handover algorithm based on fuzzy logic in mobile networks with dense small cells. , 2018, , .		14
42	Combined Shared and Dedicated Resource Allocation for D2D Communication. , $2018, \ldots$		8
43	Selection between Radio Frequency and Visible Light Communication Bands for D2D., 2018,,.		12
44	Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Communications Surveys and Tutorials, 2017, 19, 1628-1656.	24.8	2,296
45	Combination of visible light and radio frequency bands for device-to-device communication. , 2017, , .		14
46	Cloudâ€aware power control for realâ€time application offloading in mobile edge computing. Transactions on Emerging Telecommunications Technologies, 2016, 27, 648-661.	2.6	30
47	Dynamic resource allocation exploiting mobility prediction in mobile edge computing. , 2016, , .		87
48	Performance evaluation of computation offloading from mobile device to the edge of mobile network. , 2016, , .		23
49	Path selection enabling user mobility and efficient distribution of data for computation at the edge of mobile network. Computer Networks, 2016, 108, 357-370.	3.2	36
50	Energy-aware Dynamic Selection of Overlay and Underlay Spectrum Sharing for Cognitive Small cells. IEEE Transactions on Vehicular Technology, 2016, , 1-1.	3.9	20
51	Distance-Based Neighborhood Scanning for Handover Purposes in Network with Small Cells. IEEE Transactions on Vehicular Technology, 2016, 65, 883-895.	3.9	17
52	Distributed Hybrid Spectrum Access for Cognitive Femtocells in 5G Mobile Networks. Elektronika Ir Elektrotechnika, 2016, 22, .	0.4	1
53	Selfâ€optimizing neighbor cell list with dynamic threshold for handover purposes in networks with small cells. Wireless Communications and Mobile Computing, 2015, 15, 1729-1743.	0.8	6
54	Cross-layer approach enabling communication of high number of devices in 5G mobile networks. , 2015, , .		7

#	Article	IF	CITATIONS
55	A Seamless Integration of Computationally-Enhanced Base Stations into Mobile Networks towards 5G. , $2015, \ldots$		14
56	In-Band Device-to-Device Communication in OFDMA Cellular Networks: A Survey and Challenges. IEEE Communications Surveys and Tutorials, 2015, 17, 1885-1922.	24.8	274
57	Offloading Multiple Mobile Data Contents Through Opportunistic Device-to-Device Communications. Wireless Personal Communications, 2015, 84, 1963-1979.	1.8	22
58	Enhancement of Hybrid Cognitive Approach for Femtocells. , 2015, , .		1
59	Centralized dynamic resource allocation scheme for femtocells exploiting graph theory approach. , 2014, , .		4
60	Cloud-aware power control for cloud-enabled small cells., 2014,,.		12
61	Path selection using handover in mobile networks with cloud-enabled small cells. , 2014, , .		23
62	QoS-ensuring distribution of computation load among cloud-enabled small cells. , 2014, , .		14
63	An architecture for mobile computation offloading on cloud-enabled LTE small cells. , 2014, , .		39
64	Prediction of Channel Quality after Handover for Mobility Management in 5G., 2014, , .		2
65	Interference Empowered 5G Networks. , 2014, , .		0
66	Methodology and tool for energy consumption modeling of mobile devices. , 2014, , .		6
67	Q-learning-based prediction of channel quality after handover in mobile networks. , 2014, , .		2
68	Vertical Handover Decision in Heterogeneous Wireless Networks with Femtocells. Elektronika Ir Elektrotechnika, 2014, 20, .	0.4	4
69	Handover of relay stations for load balancing in IEEE 802.16. Wireless Communications and Mobile Computing, 2013, 13, 170-183.	0.8	1
70	Optimization of association procedure in WiMAX networks with relay stations. Telecommunication Systems, 2013, 52, 1697-1704.	1.6	4
71	Optimization of SINR-based Neighbor Cell List for networks with small cells. , 2013, , .		3
72	Dynamic Optimization of Neighbor Cell List for Femtocells. , 2013, , .		15

#	Article	IF	CITATIONS
73	Self-configured Neighbor Cell List of macro cells in network with Small Cells. , 2013, , .		2
74	Mitigation of Redundant Handovers to Femtocells by Estimation of throughput Gain. Mobile Information Systems, 2013, 9, 315-330.	0.4	8
75	Handover with consideration of connection cost in femtocell networks. , 2012, , .		3
76	Performance of fast cell selection in two-tier OFDMA networks with small cells. , 2012, , .		2
77	Fast cell selection with efficient active set management in OFDMA networks with femtocells. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	1.5	3
78	Connection Cost Based Handover Decision for Offloading Macrocells by Femtocells. Lecture Notes in Computer Science, 2012, , 208-219.	1.0	3
79	Handover Procedure in Femtocells. Advances in Wireless Technologies and Telecommunication Book Series, 2012, , 157-179.	0.3	4
80	Optimization of power control algorithm for femtocells based on frame utilization. , 2011, , .		2
81	QoS-Guaranteed Power Control Mechanism Based on the Frame Utilization for Femtocells. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	1.5	15
82	Improvement of handover prediction in mobile WiMAX by using two thresholds. Computer Networks, 2011, 55, 3759-3773.	3.2	37
83	Overhead of ARQ mechanism in IEEE 802.16 networks. Telecommunication Systems, 2011, 46, 353-367.	1.6	5
84	Fast predicted handover in IEEE 802.16 networks. European Transactions on Telecommunications, 2011, 22, 68-80.	1.2	3
85	Efficient routing of data for femtocells. , 2011, , .		2
86	On enhancement of handover decision in femtocells. , 2011, , .		6
87	Reduction of Scanning Reporting Overhead in IEEE 802.16 Networks with Relays. , 2010, , .		3
88	Dynamic Power Control Mechanism for Femtocells Based on the Frame Utilization. , 2010, , .		18
89	Adaptive Hysteresis Margin for Handover in Femtocell Networks. , 2010, , .		46
90	Acquisition of Channel State Information for Routing Purposes in Relay-Based WiMAX Networks. , 2009, , .		4

#	Article	IF	CITATIONS
91	Impact of Handover on VoIP Speech Quality in WiMAX Networks. , 2009, , .		8
92	Efficiency of Handover Prediction Based on Handover History. Journal of Convergence Information Technology, 2009, 4, 41-47.	0.1	17
93	Optimization of handover scanning procedure in WiMAX networks with relay stations. , 2008, , .		6
94	Impact of saturation on speech quality in VoIP., 2008,,.		2
95	Optimization of network entry procedure in relay based WiMAX networks. , 2008, , .		5
96	Impact of Additional Noise on Subjective and Objective Quality Assessement in VoIP., 2007,,.		2
97	Comparison of Common PLC Methods Used in VoIP Networks. , 2007, , .		2
98	Impact of Relay Stations Implementation on the Handover in WiMAX. , 2007, , 107-114.		5