Jun Xuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457983/publications.pdf

Version: 2024-02-01

		101543	144013
55	6,960 citations	36	57
papers	citations	h-index	g-index
59	59	59	4196
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2012, 51, 6828-6838.	13.8	1,973
2	Visible‣ightâ€Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angewandte Chemie - International Edition, 2015, 54, 15632-15641.	13.8	655
3	Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chemical Society Reviews, 2017, 46, 4329-4346.	38.1	336
4	Visible‣ightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2014, 53, 5653-5656.	13.8	271
5	Redoxâ€Neutral αâ€Allylation of Amines by Combining Palladium Catalysis and Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 1625-1628.	13.8	241
6	Visibleâ€Lightâ€Driven Photoredox Catalysis in the Construction of Carbocyclic and Heterocyclic Ring Systems. European Journal of Organic Chemistry, 2013, 2013, 6755-6770.	2.4	173
7	Room Temperature CP Bond Formation Enabled by Merging Nickel Catalysis and Visibleâ€Lightâ€Induced Photoredox Catalysis. Chemistry - A European Journal, 2015, 21, 4962-4965.	3.3	170
8	Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. Chemical Communications, 2011, 47, 8337.	4.1	164
9	Visible light-mediated C P bond formation reactions. Science Bulletin, 2019, 64, 337-350.	9.0	152
10	Visible light-promoted ring-opening functionalization of three-membered carbo- and heterocycles. Chemical Society Reviews, 2020, 49, 2546-2556.	38.1	145
11	[3 + 2] Cycloaddition/Oxidative Aromatization Sequence via Photoredox Catalysis: One-Pot Synthesis of Oxazoles from 2 <i>H</i> -Azirines and Aldehydes. Organic Letters, 2015, 17, 4070-4073.	4.6	120
12	Room temperature synthesis of isoquino [2,1-a] [3,1] oxazine and isoquino [2,1-a] pyrimidine derivatives via visible light photoredox catalysis. RSC Advances, 2012, 2, 4065.	3.6	111
13	BI-OAc-Accelerated C3–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones under Visible-Light Irradiation. Organic Letters, 2020, 22, 5984-5989.	4.6	101
14	Advances in heterocycle synthesis $\langle i \rangle via \langle i \rangle [3+\langle i \rangle m \langle i \rangle]$ -cycloaddition reactions involving an azaoxyallyl cation as the key intermediate. Chemical Communications, 2018, 54, 5154-5163.	4.1	87
15	Arylsulfonyl Radical Triggered 1,6-Enyne Cyclization: Synthesis of γ-Lactams Containing Alkenyl C–X Bonds. Organic Letters, 2018, 20, 449-452.	4.6	85
16	Silver(I)- and Base-Mediated $[3 + 3]$ -Cycloaddition of $\langle i \rangle C \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -Cyclic Azomethine Imines with Aza-oxyallyl Cations. Organic Letters, 2018, 20, 52-55.	4.6	85
17	Visibleâ€Lightâ€Induced CS Bond Activation: Facile Access to 1,4â€Diketones from βâ€Ketosulfones. Chemistr - A European Journal, 2014, 20, 3045-3049.	у _{з.з}	80
18	Photoredox Catalyst Free, Visible Lightâ€Promoted C3â^'H Acylation of Quinoxalinâ€2(1 <i>H</i>)â€ones in Water. Advanced Synthesis and Catalysis, 2020, 362, 2178-2182.	4.3	76

#	Article	IF	Citations
19	<i>De Novo</i> Synthesis of γ,γâ€Disubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence. Advanced Synthesis and Catalysis, 2014, 356, 2787-2793.	4.3	74
20	Visibleâ€Lightâ€Promoted Cascade Radical Cyclization: Synthesis of 1,4â€Diketones Containing Chromanâ€4 Skeletons. Chemistry - an Asian Journal, 2019, 14, 3269-3273.)ne 3.3	66
21	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie, 2014, 126, 5759-5762.	2.0	65
22	[3 + 2]-Cycloaddition of 2 <i>H</i> -Azirines with Nitrosoarenes: Visible-Light-Promoted Synthesis of 2,5-Dihydro-1,2,4-oxadiazoles. Organic Letters, 2019, 21, 4234-4238.	4.6	64
23	Synthesis of 2â€Substituted Indoles through Visible Lightâ€Induced Photocatalytic Cyclizations of Styryl Azides. Advanced Synthesis and Catalysis, 2014, 356, 2807-2812.	4.3	62
24	Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of NS Bond Under Visible‣ight Irradiation. Chemistry - an Asian Journal, 2013, 8, 1090-1094.	3.3	56
25	Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate. Chinese Journal of Organic Chemistry, 2021, 41, 4565.	1.3	56
26	Construction of Polycyclic \hat{I}^3 -Lactams and Related Heterocycles via Electron Catalysis. Organic Letters, 2016, 18, 6372-6375.	4.6	55
27	Divergent Synthesis of Aziridine and Imidazolidine Frameworks under Blue LED Irradiation. Organic Letters, 2021, 23, 4109-4114.	4.6	53
28	Electron Donor–Acceptor Complex Enabled Decarboxylative Sulfonylation of Cinnamic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2019, 84, 8691-8701.	3.2	52
29	Oxime Ether Synthesis through O–H Functionalization of Oximes with Diazo Esters under Blue LED Irradiation. Organic Letters, 2021, 23, 6951-6955.	4.6	48
30	[4+2]â€Cycloaddition of <i>para</i> â€Quinone Methides with Hexahydroâ€1,3,5â€Triazines: Access to 1,3â€Benzoxazine Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 523-527.	4.3	45
31	Ligand Modification of Au ₂₅ Nanoclusters for Near-Infrared Photocatalytic Oxidative Functionalization. Journal of the American Chemical Society, 2022, 144, 3787-3792.	13.7	45
32	Transitionâ€Metal Free Construction of Isoquinolineâ€fused Triazines Containing Alkenyl Câ^'X Bonds. Advanced Synthesis and Catalysis, 2019, 361, 1230-1235.	4.3	44
33	Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. Chinese Chemical Letters, 2021, 32, 2577-2581.	9.0	42
34	Visible-Light-Promoted Polysubstituted Olefins Synthesis Involving Sulfur Ylides as Carbene Trapping Reagents. Journal of Organic Chemistry, 2021, 86, 1012-1022.	3.2	36
35	Visible Light-Promoted Amide Bond Formation via One-Pot Nitrone in Situ Formation/Rearrangement Cascade. CCS Chemistry, 2021, 3, 2764-2771.	7.8	36
36	Synthesis of trisubstituted hydroxylamines by a visible light-promoted multicomponent reaction. Organic Chemistry Frontiers, 2021, 8, 5982-5987.	4.5	33

#	Article	IF	CITATIONS
37	Visible <scp>Lightâ€Promoted < /scp> Sulfoxonium Ylides Synthesis from Aryl Diazoacetates and Sulfoxides. Chinese Journal of Chemistry, 2021, 39, 1646-1650.</scp>	4.9	29
38	Radical Cascade Cyclization: Reaction of 1,6â€Enynes with Aryl Radicals by Electron Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4961-4964.	2.4	28
39	Transition-metal-free synthesis of 1,4-benzoxazepines via [4+3]-cycloaddition of para-quinone methides with azaoxyallyl cations. Science China Chemistry, 2021, 64, 61-65.	8.2	23
40	Enabling Cyclopropanation Reactions of Imidazole Heterocycles via Chemoselective Photochemical Carbene Transfer Reactions of NHC-Boranes. Organic Letters, 2022, 24, 2232-2237.	4.6	21
41	[3+3] Cycloaddition of <i>in Situ</i> Formed Azaoxyallyl Cations with Nitrones: Synthesis of 1,2,4â€Oxadiazinanâ€5â€one Derivatives. ChemistrySelect, 2017, 2, 4364-4367.	1.5	20
42	C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis. Science China Chemistry, 2016, 59, 171-174.	8.2	19
43	[3+2]â€Cycloaddition of Azaoxyallyl Cations with Cyclopropenones and Cyclopropenethiones: Synthesis of Spirocyclic Oxazole and Thiazole Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 1376-1379.	2.7	18
44	An "Umpolung Relay―Strategy: One-Pot, Twice Polarity Inversion Cascade Synthesis of Diversified [60]Fulleroindoles. Organic Letters, 2021, 23, 1302-1308.	4.6	17
45	Carbon-oxygen bond formation via visible-light-induced O–H insertion between acylsilanes and oximes. Green Synthesis and Catalysis, 2022, 3, 194-197.	6.8	16
46	Visible-light-promoted nitrone synthesis from nitrosoarenes under catalyst- and additive-free conditions. Photochemical and Photobiological Sciences, 2021, 20, 823-829.	2.9	13
47	KO ^{<i>t</i>} Bu-Promoted C4 Selective Coupling Reaction of Phenols and [60]Fullerene: One-Pot Synthesis of 4-[60]Fullerephenols under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 5431-5437.	3.2	11
48	Allâ€Carbon Tetrasubstituted Olefins Synthesis from Diazo Compounds and Iodonium Ylides under Blue LED Irradiation. Advanced Synthesis and Catalysis, 0, , .	4.3	11
49	Photochemical Synthesis of Aroylated Heterocycles under Catalyst and Additive Free Conditions. Chinese Journal of Organic Chemistry, 2022, 42, 923.	1.3	10
50	Radical Addition/Cyclization Reaction of 2â€√inylanilines with Alkynes: Synthesis of Naphthalenes via Electron Catalysis. Chemistry - an Asian Journal, 2018, 13, 3855-3858.	3.3	9
51	Potassium salt promoted regioselective three-component coupling synthesis of 1,4-asymmetrical [60] fullerene bisadducts with superior electron transport properties. Chemical Communications, 2020, 56, 9513-9516.	4.1	9
52	One-pot, three-component regioselective coupling reaction of triphenylamine/carbazole derivatives with [60]fullerene and indoles ⟨i⟩via⟨/i⟩ an "umpolung relay―strategy. Organic Chemistry Frontiers, 2021, 8, 5994-5999.	4.5	8
53	Nitrogen and chlorine co-doped carbon dots with synchronous excitation of multiple luminescence centers for blue-white emission. New Journal of Chemistry, 2021, 45, 7056-7059.	2.8	7
54	Direct Photoexcitation of Benzothiazolines: Acyl Radical Generation and Application to Access Heterocycles. Molecules, 2021, 26, 6843.	3.8	6

#	Article	IF	CITATIONS
55	Transition-Metal-Free Domino Reaction of [60] Fullerene, Indole, and DMSO/HCl: One-Pot Access to Diverse N-Substituted [60] Fulleroindole Derivatives. Journal of Organic Chemistry, 2022, 87, 7945-7954.	3.2	3