Shichao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fewâ€Layered SnS ₂ on Fewâ€Layered Reduced Graphene Oxide as Naâ€Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability. Advanced Functional Materials, 2015, 25, 481-489.	7.8	391
2	Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1819-1822.	2.3	217
3	Hierarchical CuO–TiO ₂ Hollow Microspheres for Highly Efficient Photodriven Reduction of CO ₂ to CH ₄ . ACS Sustainable Chemistry and Engineering, 2015, 3, 2381-2388.	3.2	179
4	Nickel Nanoconeâ€Array Supported Silicon Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2010, 22, 5378-5382.	11.1	161
5	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	5.2	158
6	Direct Growth of Flowerâ€Like δâ€MnO ₂ on Threeâ€Dimensional Graphene for Highâ€Performance Rechargeable Liâ€O ₂ Batteries. Advanced Energy Materials, 2014, 4, 1301960.	10.2	154
7	N-doped hollow urchin-like anatase TiO 2 @C composite as a novel anode for Li-ion batteries. Journal of Power Sources, 2018, 385, 10-17.	4.0	110
8	Peanut-like MnO@C core–shell composites as anode electrodes for high-performance lithium ion batteries. Nanoscale, 2014, 6, 3508.	2.8	103
9	Graphene-Based Materials for Flexible Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13901-13923.	7.3	94
10	Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6742-6746.	5.2	79
11	MnO Nanoparticles Interdispersed in 3D Porous Carbon Framework for High Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 12713-12718.	4.0	76
12	Simple Synthesis of Mesoporous Carbon Nanofibers with Hierarchical Nanostructure for Ultrahigh Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 2561-2567.	4.0	76
13	Tips-Bundled Pt/Co ₃ O ₄ Nanowires with Directed Peripheral Growth of Li ₂ O ₂ as Efficient Binder/Carbon-Free Catalytic Cathode for Lithium–Oxygen Battery. ACS Catalysis, 2015, 5, 241-245.	5.5	69
14	Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage. Journal of Materials Chemistry, 2012, 22, 11151.	6.7	66
15	ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery. Electrochimica Acta, 2016, 189, 245-251.	2.6	60
16	Controllable synthesis of high-performance LiMnPO ₄ nanocrystals by a facile one-spot solvothermal process. Journal of Materials Chemistry A, 2014, 2, 10581-10588.	5.2	58
17	Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage. Journal of Materials Chemistry, 2012, 22, 11636.	6.7	55
18	Graphene-like δ-MnO ₂ decorated with ultrafine CeO ₂ as a highly efficient catalyst for long-life lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 6747-6755.	5.2	51

#	Article	IF	CITATIONS
19	Enhanced Electrochemical Performance of Sn–Co Nanoarchitectured Electrode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 23603-23609.	1.5	49
20	Mushroom-like Au/NiCo ₂ O ₄ nanohybrids as high-performance binder-free catalytic cathodes for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 5714-5721.	5.2	48
21	Formation of a stable carbon framework in a MnO yolk–shell sphere to achieve exceptional performance for a Li-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 15591-15597.	5.2	48
22	Auâ€Decorated Cracked Carbon Tube Arrays as Binderâ€Free Catalytic Cathode Enabling Guided Li ₂ O ₂ Inner Growth for Highâ€Performance Liâ€O ₂ Batteries. Advanced Functional Materials, 2016, 26, 7725-7732.	7.8	45
23	Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life. Journal of Power Sources, 2014, 248, 337-342.	4.0	44
24	High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors. Scientific Reports, 2015, 5, 15388.	1.6	44
25	Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium–Air Batteries Catalyzed by Gold/Manganese-Dioxide. ACS Applied Materials & Interfaces, 2015, 7, 23876-23884.	4.0	42
26	One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Advances, 2014, 4, 7703.	1.7	41
27	Morphology and size controlled synthesis of the hierarchical structured Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Electrochimica Acta, 2019, 297, 406-416.	2.6	38
28	Facile synthesis of hierarchical mesoporous CuxCo3-xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries. Electrochimica Acta, 2014, 150, 75-82.	2.6	37
29	Fe ₃ O ₄ hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Advances, 2019, 9, 20107-20112.	1.7	36
30	Facile solvothermal synthesis of ultrathin LiFe _x Mn _{1â^'x} PO ₄ nanoplates as advanced cathodes with long cycle life and superior rate capability. Journal of Materials Chemistry A, 2015, 3, 19368-19375.	5.2	35
31	Facile Fabrication of Fe ₂ O ₃ Nanoparticles Anchored on Carbon Nanotubes as Highâ€Performance Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 2458-2463.	1.7	35
32	MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries. New Journal of Chemistry, 2016, 40, 9679-9683.	1.4	33
33	Hierarchical Co3O4@multiwalled carbon nanotube nanocable films with superior cyclability and high lithium storage capacity. Electrochimica Acta, 2013, 108, 651-659.	2.6	32
34	Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials. RSC Advances, 2016, 6, 69882-69888.	1.7	32
35	Polydopamine-coated hierarchical tower-shaped carbon for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 319, 359-365.	2.6	31
36	Application of Carbon Supported Pt _{core} –Au _{shell} Nanoparticles in Methanol Electrooxidation. Journal of Physical Chemistry C, 2014, 118, 29845-29853.	1.5	30

#	Article	IF	CITATIONS
37	<scp>Inâ€situ</scp> growth of ultrathin sulfur <scp>microcrystal</scp> on <scp>MXene</scp> â€based <scp>3D</scp> matrice for flexible lithium–sulfur batteries. EcoMat, 2022, 4, .	6.8	30
38	From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4, 17902.	1.7	28
39	Controlled Growth of Li ₂ O ₂ by Cocatalysis of Mobile Pd and Co ₃ O ₄ Nanowire Arrays for High-Performance Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31653-31660.	4.0	26
40	Hierarchical porous ZnMn ₂ O ₄ microspheres assembled by nanosheets for high performance anodes of lithium ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 1730-1736.	3.0	26
41	Mesoporous Pd/Co 3 O 4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O 2 batteries. Applied Surface Science, 2017, 420, 222-232.	3.1	24
42	Rational design of a 3D MoS ₂ /dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. Journal of Materials Chemistry A, 2018, 6, 13797-13805.	5.2	23
43	Synthesis, structure and electrochemical properties of lithium-rich cathode material Li1.2Mn0.6Ni0.2O2 microspheres. RSC Advances, 2015, 5, 81565-81572.	1.7	22
44	Ni ₃ S ₂ nanosheet-anchored carbon submicron tube arrays as high-performance binder-free anodes for Na-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 131-138.	3.0	22
45	In Situ Synthesis of the Peapod‣ike Cu–SnO ₂ @Copper Foam as Anode with Excellent Cycle Stability and High Area Specific Capacity. Advanced Functional Materials, 2021, 31, 2101999.	7.8	22
46	Vertically Cobalt Nanoplate Arrays Based on One-Step Electrochemical Growth and Their Magnetic Properties. Journal of Physical Chemistry C, 2012, 116, 2801-2806.	1.5	21
47	Ru-decorated knitted Co ₃ O ₄ nanowires as a robust carbon/binder-free catalytic cathode for lithium–oxygen batteries. New Journal of Chemistry, 2016, 40, 6812-6818.	1.4	20
48	Freestanding 3D nanoporous Cu@1D Cu ₂ O nanowire heterostructures: from a facile one-step protocol to robust application in Li storage. Journal of Materials Chemistry A, 2019, 7, 15089-15100.	5.2	19
49	Self-assembled hierarchical porous NiMn2O4 microspheres as high performance Li-ion battery anodes. RSC Advances, 2018, 8, 41749-41755.	1.7	18
50	Investigating the increased-capacity mechanism of porous carbon materials in lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14031-14042.	5.2	18
51	Synthesis of polyaniline-sulfur composites with different nanostructures <i>via</i> an interfacial emulsification method and a micelle template method and their properties. RSC Advances, 2020, 10, 11455-11462.	1.7	18
52	Hollow carbon-shell/carbon-nanorod arrays for high performance Li-ion batteries and supercapacitors. RSC Advances, 2015, 5, 7959-7963.	1.7	17
53	Glucose-assisted combustion synthesis of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ cathode materials with superior electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 7905-7907	1.7	17
54	3D S@MoS2@reduced graphene oxide aerogels cathode for high-rate lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 852, 157011.	2.8	17

#	Article	IF	CITATIONS
55	Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Research, 0, , 1.	5.8	16
56	Application of nano Al2O3 particles as precipitate nucleus for preparation of high rate nickel-rich cathode materials. Journal of Power Sources, 2019, 439, 227038.	4.0	15
57	Improved Electrocatalytic Activity of Three-Dimensional Open-Structured Co ₃ O ₄ @MnO ₂ Bifunctional Catalysts of Li-O ₂ Batteries by Inducing the Oriented Growth of Li ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 5334-5344.	3.2	15
58	Rechargeable Na–SO 2 Battery with Ethylenediamine Additive in Etherâ€Based Electrolyte. Advanced Functional Materials, 2020, 30, 2002120.	7.8	15
59	Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphology-reserved conversion to magnetic Fe3O4/C nanocomposites. RSC Advances, 2013, 3, 19097.	1.7	14
60	A facile one-pot dealloying strategy to synthesize monolithic asymmetry-patterned nanoporous copper ribbons with tunable microstructure and nanoporosity. RSC Advances, 2016, 6, 2662-2670.	1.7	14
61	A facile one-pot oxidation-assisted dealloying protocol to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks for photodegradation of methyl orange. Scientific Reports, 2016, 6, 36084.	1.6	14
62	Synthesis and properties of mesoporous Zn-doped Li _{1.2} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ as cathode materials by a MOFs-assisted solvothermal method. RSC Advances, 2017, 7, 35055-35059.	1.7	14
63	Structure-designed synthesis of 3D MoS ₂ anchored on ionic liquid modified rGO–CNTs inspired by a honeycomb for excellent lithium storage. Journal of Materials Chemistry A, 2020, 8, 4868-4876.	5.2	14
64	A Flexible Li–Air Battery Workable under Harsh Conditions Based on an Integrated Structure: A Composite Lithium Anode Encased in a Gel Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 18627-18637.	4.0	14
65	Ordered LiMPO4 (M = Fe, Mn) nanorods synthesized from NH4MPO4·H2O microplates by stress involved ion exchange for Li-ion batteries. CrystEngComm, 2014, 16, 2239.	1.3	13
66	Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity. RSC Advances, 2015, 5, 87090-87097.	1.7	13
67	ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium–sulfur batteries. RSC Advances, 2020, 10, 32966-32975.	1.7	13
68	Reduced graphene oxide induced confined growth of PbTe crystals and enhanced electrochemical Li-storage properties. RSC Advances, 2013, 3, 23612.	1.7	12
69	Sea urchin-like Co3O4@Pd Nanoneedles with 3D open-structured matrix as efficient catalytic cathode for Li-O2 batteries. Solid State Ionics, 2019, 343, 115075.	1.3	12
70	Identical cut-off voltage <i>versus</i> equivalent capacity: an objective evaluation of the impact of dopants in layered oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 11219-11227.	5.2	12
71	Nanoporous copper from dual-phase alloy families and its technology application in lithium ion batteries. Corrosion Reviews, 2015, 33, 203-231.	1.0	11
72	Fabrication of rutile TiO ₂ nanorod arrays on a copper substrate for high-performance lithium-ion batteries. RSC Advances, 2016, 6, 55671-55675.	1.7	11

#	Article	IF	CITATIONS
73	Improving cycling stability and suppressing voltage fade of layered lithium-rich cathode materials via SiO2 shell coating. Ionics, 2019, 25, 1979-1990.	1.2	11
74	Lychee-like TiO ₂ @TiN dual-function composite material for lithium–sulfur batteries. RSC Advances, 2020, 10, 2670-2676.	1.7	11
75	Facile One-Step Solution-Phase Route to Synthesize Hollow Nanoporous Cu _{<i>x</i>} O Microcages on 3D Copper Foam for Superior Li Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 4363-4370.	3.2	10
76	Monolithic threeâ€dimensional hollow nanoporous <scp>Cu</scp> <i>_x</i> <scp>O</scp> encapsulated mesoporous Cu heterostructures with superior Li storage properties. EcoMat, 2022, 4, .	6.8	10
77	Investigation of Co3O4 nanorods supported Pd anode catalyst for methanol oxidation in alkaline solution. Journal of Energy Chemistry, 2014, 23, 801-808.	7.1	9
78	Hollow nano silicon prepared by a controlled template direction and magnesiothermic reduction reaction as anode for lithium ion batteries. New Journal of Chemistry, 2014, 38, 4177.	1.4	9
79	Synthesis of Cu@Fe3O4 nanowire arrays electrode for Li-ion batteries. RSC Advances, 2014, 4, 50752-50758.	1.7	9
80	Temperature-induced surface reconstruction and interface structure evolution on ligament of nanoporous copper. Scientific Reports, 2018, 8, 447.	1.6	9
81	Investigation of immiscible Sn–Zn coatings with two-layer microstructure as anode material for Li-ion battery. Journal of Applied Electrochemistry, 2012, 42, 477-482.	1.5	8
82	Preparation and characterization of nanoporous Cu6Sn5/Cu composite by chemical dealloying of Al–Cu–Sn ternary alloy. Journal of Materials Science, 2012, 47, 5911-5917.	1.7	8
83	Facile synthesis of nanostructured LiMnPO ₄ as a high-performance cathode material with long cycle life and superior rate capability. RSC Advances, 2015, 5, 99632-99639.	1.7	8
84	Facile shape control of nano-coaxial Co ₃ O ₄ /TiO ₂ arrays and the effect of the microstructure on lithium storage capability. New Journal of Chemistry, 2016, 40, 3536-3542.	1.4	8
85	Facile In-Situ Synthesis of Freestanding 3D Nanoporous Cu@Cu2O Hierarchical Nanoplate Arrays as Binder-Free Integrated Anodes for High-Capacity, Long-Life Li-Ion Batteries. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2536-2548.	1.1	8
86	Co3O4 anchored on ionic liquid modified PAN as anode materials for flexible lithium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 908, 116105.	1.9	8
87	Sustainable carbon-sheets and their MnO–C hybrid for Li-ion batteries. RSC Advances, 2016, 6, 79066-79071.	1.7	7
88	Cu@Sn nanostructures based on light-weight current collectors for superior reversible lithium ion storage. RSC Advances, 2016, 6, 20042-20050.	1.7	6
89	Self-standing Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ /graphene membrane as a binder-free cathode for Li-ion batteries. RSC Advances, 2018, 8, 39769-39776.	1.7	6
90	Influence of alloy composition on nanoporous structure by dealloying Mn-Cu ribbons. Rare Metals, 2011, 30, 370-374.	3.6	5

#	Article	IF	CITATIONS
91	Electrochemical growth of dispersing nickel oxide nanoparticles on carbon nanotubes. Rare Metals, 2011, 30, 661-665.	3.6	5
92	Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene. Optical and Quantum Electronics, 2017, 49, 1.	1.5	5
93	3D Si@Cu-Ni nano-pillars array composite as carbon/binder free anode for lithium ion battery. Journal of Materials Research and Technology, 2020, 9, 1549-1558.	2.6	5
94	In Situ Synthesis of the Peapod‣ike Cu–SnO ₂ @Copper Foam as Anode with Excellent Cycle Stability and High Area Specific Capacity (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170240.	7.8	5
95	Facile One-Step Preparation of 3D Nanoporous Cu/Cu6Sn5 Microparticles as Anode Material for Lithium-Ion Batteries with Superior Lithium Storage Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5965-5973.	1.1	4
96	A Novel Sulfurâ€Based Terpolymer Cathode Material for Lithium–Sulfur Battery. Energy Technology, 2020, 8, 2000057.	1.8	3
97	Spin filtering magnetic modulation and spin-polarization switching in hybrid ferromagnet/semiconductor structures. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1057-1062.	2.0	2
98	Designed Electrochemical and Wet-chemical Fabrication of Cu/Cu2O@TiO2 Hybrid Nanowire Arrays for Li-ion Microbattery. Chemistry Letters, 2014, 43, 1625-1627.	0.7	2
99	Serial Disulfide Polymers as Cathode Materials in Lithium-Sulfur Battery: Materials Optimization and Electrochemical Characterization. Applied Sciences (Switzerland), 2020, 10, 2538.	1.3	2