Anja Groth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457131/publications.pdf Version: 2024-02-01

ΔΝΙΑ ΟΡΟΤΗ

#	Article	IF	CITATIONS
1	NASP maintains histone H3–H4 homeostasis through two distinct H3 binding modes. Nucleic Acids Research, 2022, 50, 5349-5368.	6.5	21
2	Genetic and functional insights into CDA-I prevalence and pathogenesis. Journal of Medical Genetics, 2021, 58, 185-195.	1.5	9
3	Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Molecular Cell, 2021, 81, 1084-1099.e6.	4.5	57
4	DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network. Molecular Cell, 2021, 81, 2533-2548.e9.	4.5	31
5	BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature, 2021, 596, 433-437.	13.7	92
6	Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq. Nature Protocols, 2021, 16, 4446-4493.	5.5	11
7	Repeat RNAs associate with replication forks and post-replicative DNA. Rna, 2020, 26, 1104-1117.	1.6	5
8	Chromatin replication and epigenetic cell memory. Nature Cell Biology, 2020, 22, 361-371.	4.6	170
9	Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes. Cell Reports, 2020, 30, 1223-1234.e8.	2.9	54
10	A chromatin-based signalling mechanism directs the switch from mutagenic to error-free repair of DNA double strand breaks. Molecular and Cellular Oncology, 2019, 6, 1605820.	0.3	3
11	Transcription Restart Establishes Chromatin Accessibility after DNA Replication. Molecular Cell, 2019, 75, 284-297.e6.	4.5	62
12	H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids. Nature Cell Biology, 2019, 21, 311-318.	4.6	146
13	Accurate Recycling of Parental Histones Reproduces the Histone Modification Landscape during DNA Replication. Molecular Cell, 2018, 72, 239-249.e5.	4.5	188
14	MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 2018, 361, 1389-1392.	6.0	207
15	Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors. Science Advances, 2018, 4, eaat4985.	4.7	40
16	Histone chaperone networks shaping chromatin function. Nature Reviews Molecular Cell Biology, 2017, 18, 141-158.	16.1	401
17	Differential requirements for Tousled-like kinases 1 and 2 in mammalian development. Cell Death and Differentiation, 2017, 24, 1872-1885.	5.0	20
18	Chromatin Replication and Histone Dynamics. Advances in Experimental Medicine and Biology, 2017, 1042, 311-333.	0.8	44

Anja Groth

#	Article	IF	CITATIONS
19	<scp>BRPF</scp> 3― <scp>HBO</scp> 1 regulates replication origin activation and histone H3K14 acetylation. EMBO Journal, 2016, 35, 176-192.	3.5	97
20	H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature, 2016, 534, 714-718.	13.7	172
21	TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. Journal of Cell Biology, 2016, 212, 63-75.	2.3	65
22	TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. Journal of Experimental Medicine, 2016, 213, 21310IA127.	4.2	0
23	Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nature Communications, 2015, 6, 6533.	5.8	80
24	A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nature Structural and Molecular Biology, 2015, 22, 618-626.	3.6	192
25	Two distinct modes for propagation of histone PTMs across the cell cycle. Genes and Development, 2015, 29, 585-590.	2.7	334
26	Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nature Cell Biology, 2014, 16, 281-291.	4.6	312
27	New histone supply regulates replication fork speed and PCNA unloading. Journal of Cell Biology, 2014, 204, 29-43.	2.3	132
28	Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nature Communications, 2014, 5, 3394.	5.8	54
29	Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO Journal, 2012, 31, 3229-3229.	3.5	27
30	Cyclin-Dependent Kinase Suppression by WEE1 Kinase Protects the Genome through Control of Replication Initiation and Nucleotide Consumption. Molecular and Cellular Biology, 2012, 32, 4226-4236.	1.1	238
31	H3K56me1 Marks a Spot for PCNA. Molecular Cell, 2012, 46, 1-2.	4.5	29
32	Chromatin replication and epigenome maintenance. Nature Reviews Molecular Cell Biology, 2012, 13, 153-167.	16.1	503
33	Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO Journal, 2012, 31, 2013-2023.	3.5	66
34	Broken Silence Restored—Remodeling Primes for Deacetylation at Replication Forks. Molecular Cell, 2011, 42, 267-269.	4.5	6
35	Replication stress, a source of epigenetic aberrations in cancer?. BioEssays, 2010, 32, 847-855.	1.2	26
36	Replication Stress Interferes with Histone Recycling and Predeposition Marking of New Histones. Molecular Cell, 2010, 37, 736-743.	4.5	242

Anja Groth

1.6

42

#	Article	IF	CITATIONS
37	Identification of the MMS22L-TONSL Complex that Promotes Homologous Recombination. Molecular Cell, 2010, 40, 632-644.	4.5	100
38	Restoring chromatin after replication: How new and old histone marks come together. Seminars in Cell and Developmental Biology, 2010, 21, 231-237.	2.3	34
39	Replicating chromatin: a tale of histonesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB's 51st Annual Meeting– Epigenetics and Chromatin Dynamics, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 51-63.	0.9	21
40	Replication of Chromatin. , 2009, , 297-315.		0
41	Chromatin Challenges during DNA Replication and Repair. Cell, 2007, 128, 721-733.	13.5	669
42	Regulation of Replication Fork Progression Through Histone Supply and Demand. Science, 2007, 318, 1928-1931.	6.0	407
43	High-density growth arrest in Ras-transformed cells: low Cdk kinase activities in spite of absence of p27 Cdk-complexes. Cellular Signalling, 2005, 17, 1063-1073.	1.7	7
44	Human Asf1 Regulates the Flow of S Phase Histones during Replicational Stress. Molecular Cell, 2005, 17, 301-311.	4.5	241
45	Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO Journal, 2003, 22, 1676-1687.	3.5	143
46	Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene, 2002, 21, 3058-3067.	2.6	17
47	Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO Journal, 2002, 21, 5911-5920.	3.5	272
	Oncogenic Ras induces n19ARF and growth arrest in mouse embryo fibroblasts lacking n21Cin1 and		

Uncogenic Ras induces p19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cip1 and
p27Kip1 without activating cyclin D-dependent kinases. Journal of Biological Chemistry, 2000, 275, 27473-80.