JiÅÄL̕Šponer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophysical Journal, 2007, 92, 3817-3829.	0.2	2,036
2	Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 2006, 8, 1985-1993.	1.3	1,635
3	Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs:  Nonempirical Ab Initio Calculations. Chemical Reviews, 1999, 99, 3247-3276.	23.0	984
4	Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. Journal of Chemical Theory and Computation, 2011, 7, 2886-2902.	2.3	873
5	Density functional theory and molecular clusters. Journal of Computational Chemistry, 1995, 16, 1315-1325.	1.5	503
6	Accurate Interaction Energies of Hydrogen-Bonded Nucleic Acid Base Pairs. Journal of the American Chemical Society, 2004, 126, 10142-10151.	6.6	444
7	Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers, 2001, 61, 3-31.	1.2	408
8	RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews, 2018, 118, 4177-4338.	23.0	408
9	Nature of Nucleic Acidâ^'Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs. The Journal of Physical Chemistry, 1996, 100, 5590-5596.	2.9	404
10	Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation. The Journal of Physical Chemistry, 1996, 100, 1965-1974.	2.9	400
11	Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. Journal of Chemical Theory and Computation, 2015, 11, 5723-5736.	2.3	392
12	Toward True DNA Base-Stacking Energies:  MP2, CCSD(T), and Complete Basis Set Calculations. Journal of the American Chemical Society, 2002, 124, 11802-11808.	6.6	376
13	Assessing the Current State of Amber Force Field Modifications for DNA. Journal of Chemical Theory and Computation, 2016, 12, 4114-4127.	2.3	351
14	A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Research, 2010, 38, 299-313.	6.5	349
15	Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. Journal of Chemical Theory and Computation, 2010, 6, 3836-3849.	2.3	339
16	Nature and magnitude of aromatic stacking of nucleic acid bases. Physical Chemistry Chemical Physics, 2008, 10, 2595.	1.3	317
17	Intercalators. 1. Nature of Stacking Interactions between Intercalators (Ethidium, Daunomycin,) Tj ETQq1 1 0.78 Functional Theory, and Empirical Potential Study. Journal of the American Chemical Society, 2002, 124, 3366-3376.	4314 rgBT 6.6	/Overlock 10 293
18	Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. Journal of Chemical Theory and Computation, 2013, 9, 2339-2354.	2.3	255

#	Article	IF	CITATIONS
19	Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), andab initio Hartree-Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree-Fock results. , 1997, 18, 1136-1150.		251
20	Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study. The Journal of Physical Chemistry, 1994, 98, 3161-3164.	2.9	242
21	DNA Basepair Step Deformability Inferred from Molecular Dynamics Simulations. Biophysical Journal, 2003, 85, 2872-2883.	0.2	237
22	Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. Journal of Chemical Theory and Computation, 2012, 8, 2506-2520.	2.3	231
23	Hydrogen Bonding and Stacking of DNA Bases: A Review of Quantum-chemical <i>ab initio</i> Studies. Journal of Biomolecular Structure and Dynamics, 1996, 14, 117-135.	2.0	222
24	Interaction of DNA Base Pairs with Various Metal Cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+,) Tj ETC Interaction. Journal of Physical Chemistry B, 1997, 101, 9670-9677.	2q0 0 0 rg 1.2	BT /Overlock 222
25	Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). The Journal of Physical Chemistry, 1996, 100, 7250-7255.	2.9	214
26	Nature of Base Stacking: Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps. Chemistry - A European Journal, 2006, 12, 2854-2865.	1.7	211
27	DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations. , 1996, 57, 959-970.		197
28	H-Bonded and Stacked DNA Base Pairs: Cytosine Dimer. An Ab Initio Second-Order Moeller-Plesset Study. Journal of the American Chemical Society, 1995, 117, 792-798.	6.6	187
29	Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution : Part 1. Cytosine. Physical Chemistry Chemical Physics, 2002, 4, 4192-4203.	1.3	187
30	μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Research, 2014, 42, 12272-12283.	6.5	186
31	Interaction between the Guanineâ^'Cytosine Watsonâ^'Crick DNA Base Pair and Hydrated Group IIa (Mg2+,) Tj ET 102, 5951-5957.	Qq1 1 0.7 1.1	'84314 rgBT 171
32	Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 1999, 121, 5519-5534.	6.6	162
33	High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proceedings of the United States of America, 2015, 112, 657-662.	3.3	159
34	Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Research, 2009, 37, 4898-4918.	6.5	156
35	Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In. Accounts of Chemical Research, 2010, 43, 40-47.	7.6	155
36	Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution:Â Ab Initio/Langevin Dipoles Study. Journal of Physical Chemistry B, 1999, 103, 884-892.	1.2	150

#	Article	IF	CITATIONS
37	Molecular Dynamics Simulations and Thermodynamics Analysis of DNAâ^'Drug Complexes. Minor Groove Binding between 4â€~,6-Diamidino-2-phenylindole and DNA Duplexes in Solution. Journal of the American Chemical Society, 2003, 125, 1759-1769.	6.6	150
38	Sequence-dependent elastic properties of DNA 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 299, 695-709.	2.0	149
39	The Effect of Metal Binding to the N7 Site of Purine Nucleotides on Their Structure, Energy, and Involvement in Base Pairing. Journal of Physical Chemistry B, 2000, 104, 7535-7544.	1.2	147
40	Metal-Stabilized Rare Tautomers and Mispairs of DNA Bases:  N6-Metalated Adenine and N4-Metalated Cytosine, Theoretical and Experimental Views. Journal of Physical Chemistry A, 1999, 103, 11406-11413.	1.1	145
41	Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. Journal of Physical Chemistry Letters, 2014, 5, 1771-1782.	2.1	139
42	Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. Journal of the American Chemical Society, 1994, 116, 709-714.	6.6	137
43	Molecular dynamics simulations of RNA: Anin silico single molecule approach. Biopolymers, 2007, 85, 169-184.	1.2	137
44	Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. Journal of Chemical Theory and Computation, 2014, 10, 3177-3189.	2.3	135
45	Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophysical Journal, 2003, 85, 1787-1804.	0.2	128
46	Câ^'H···O Contacts in the Adenine···Uracil Watsonâ^'Crick and Uracil···Uracil Nucleic Acid Base Pairs: Nonempirical ab Initio Study with Inclusion of Electron Correlation Effects. Journal of Physical Chemistry B, 2000, 104, 6286-6292.	 1.2	125
47	Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. Journal of Chemical Theory and Computation, 2016, 12, 4534-4548.	2.3	125
48	Cations and Hydration in Catalytic RNA: Molecular Dynamics of the Hepatitis Delta Virus Ribozyme. Biophysical Journal, 2006, 91, 626-638.	0.2	122
49	Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. Journal of Chemical Theory and Computation, 2009, 5, 2514-2530.	2.3	121
50	Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel G-quadruplexes. Nucleic Acids Research, 2011, 39, 4499-4512.	6.5	119
51	Molecular Dynamics Simulations of Guanine Quadruplex Loops: Advances and Force Field Limitations. Biophysical Journal, 2004, 87, 227-242.	0.2	116
52	Amino groups in nucleic acid bases, aniline, aminopyridines, and aminotriazine are nonplanar: Results of correlatedabinitioquantum chemical calculations and anharmonic analysis of the aniline inversion motion. Journal of Chemical Physics, 1996, 105, 11042-11050.	1.2	115
53	Base Stacking and Hydrogen Bonding in Protonated Cytosine Dimer: The Role of Molecular ion-dipole and Induction Interactions. Journal of Biomolecular Structure and Dynamics, 1996, 13, 695-706.	2.0	114
54	Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods, 2012, 57, 25-39.	1.9	111

#	Article	IF	CITATIONS
55	Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Research, 2013, 41, 7128-7143.	6.5	111
56	On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. Journal of Molecular Biology, 1998, 279, 1123-1136.	2.0	110
57	A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nature Chemistry, 2017, 9, 303-309.	6.6	109
58	Uracil Dimer:  Potential Energy and Free Energy Surfaces. Ab Initio beyond Hartreeâ^'Fock and Empirical Potential Studies. Journal of Physical Chemistry A, 1998, 102, 6921-6926.	1.1	108
59	Non-Watson-Crick Basepairing and Hydration in RNA Motifs: Molecular Dynamics of 5S rRNA Loop E. Biophysical Journal, 2003, 84, 3564-3582.	0.2	108
60	Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. Journal of the American Chemical Society, 2013, 135, 9785-9796.	6.6	108
61	Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers, 2013, 99, 978-988.	1.2	106
62	Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals. Journal of Physical Chemistry A, 2000, 104, 4592-4597.	1.1	103
63	Interaction of the Adenineâ^'Thymine Watsonâ^'Crick and Adenineâ^'Adenine Reverse-Hoogsteen DNA Base Pairs with Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and IIb (Zn2+, Cd2+, Hg2+) Metal Cations:Â Absence of the Base Pair Stabilization by Metal-Induced Polarization Effects. Journal of Physical Chemistry B. 1999. 103. 2528-2534.	1.2	102
64	Nonplanar DNA Base Pairs. Journal of Biomolecular Structure and Dynamics, 1996, 13, 827-833.	2.0	101
65	Molecular dynamics simulations and their application to four-stranded DNA. Methods, 2007, 43, 278-290.	1.9	97
66	Comparison of Intrinsic Stacking Energies of Ten Unique Dinucleotide Steps in A-RNA and B-DNA Duplexes. Can We Determine Correct Order of Stability by Quantum-Chemical Calculations?. Journal of Physical Chemistry B, 2010, 114, 1191-1203.	1.2	97
67	Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. Journal of Chemical Theory and Computation, 2019, 15, 3288-3305.	2.3	97
68	Interactions of Hydrated Mg2+ Cation with Bases, Base Pairs, and Nucleotides. Electron Topology, Natural Bond Orbital, Electrostatic, and Vibrational Study. Journal of Physical Chemistry B, 2001, 105, 6051-6060.	1.2	95
69	A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer. Scientific Reports, 2015, 5, 11385.	1.6	95
70	Structural Dynamics and Cation Interactions of DNA Quadruplex Molecules Containing Mixed Guanine/Cytosine Quartets Revealed by Large-Scale MD Simulations. Journal of the American Chemical Society, 2001, 123, 3295-3307.	6.6	93
71	Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13380-13385.	3.3	92
72	Potential Energy Surface of the Cytosine Dimer:Â MP2 Complete Basis Set Limit Interaction Energies, CCSD(T) Correction Term, and Comparison with the AMBER Force Field. Journal of Physical Chemistry B, 2004, 108, 5466-5471.	1.2	91

#	Article	IF	CITATIONS
73	Hinge-Like Motions in RNA Kink-Turns: The Role of the Second A-Minor Motif and Nominally Unpaired Bases. Biophysical Journal, 2005, 88, 3466-3485.	0.2	91
74	Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit. Journal of Chemical Theory and Computation, 2015, 11, 4972-4991.	2.3	90
75	Crystal Structure of d(GGCCAATTGG) Complexed with DAPI Reveals Novel Binding Modeâ€,â€j. Biochemistry, 1999, 38, 16443-16451.	1.2	89
76	Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1246-1263.	1.1	89
77	Molecular dynamics simulations of sarcin-ricin rRNA motif. Nucleic Acids Research, 2006, 34, 697-708.	6.5	88
78	Critical Effect of the N2 Amino Group on Structure, Dynamics, and Elasticity of DNA Polypurine Tracts. Biophysical Journal, 2002, 82, 2592-2609.	0.2	84
79	Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions. Physical Chemistry Chemical Physics, 2010, 12, 3522.	1.3	84
80	Computer Folding of RNA Tetraloops? Are We There Yet?. Journal of Chemical Theory and Computation, 2013, 9, 2115-2125.	2.3	84
81	Theoretical Study of Binding of Hydrated Zn(II) and Mg(II) Cations to 5â€ [~] -Guanosine Monophosphate. Toward Polarizable Molecular Mechanics for DNA and RNA. Journal of Physical Chemistry B, 2003, 107, 8669-8681.	1.2	82
82	Theoretical studies of RNA catalysis: Hybrid QM/MM methods and their comparison with MD and QM. Methods, 2009, 49, 202-216.	1.9	82
83	Extensive Molecular Dynamics Simulations Showing That Canonical G8 and Protonated A38H ⁺ Forms Are Most Consistent with Crystal Structures of Hairpin Ribozyme. Journal of Physical Chemistry B, 2010, 114, 6642-6652.	1.2	81
84	Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. Journal of Chemical Theory and Computation, 2014, 10, 1326-1340.	2.3	81
85	Non-Watsonâ^'Crick Base Pairing in RNA. Quantum Chemical Analysis of the cis Watsonâ^'Crick/Sugar Edge Base Pair Family. Journal of Physical Chemistry A, 2005, 109, 2292-2301.	1.1	80
86	Outer-Shell and Inner-Shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+,) Tj ETQq0 0 0 o of Physical Chemistry B, 2003, 107, 1913-1923.	rgBT /Ove 1.2	erlock 10 Tf ! 79
87	Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Physical Chemistry Chemical Physics, 2010, 12, 10476.	1.3	79
88	Complexes of Pentahydrated Zn2+with Guanine, Adenine, and the Guanineâ^'Cytosine and Adenineâ^'Thymine Base Pairs. Structures and Energies Characterized by Polarizable Molecular Mechanics and ab Initio Calculations. Journal of Physical Chemistry B, 1999, 103, 11415-11427.	1.2	78
89	Global Minimum of the Adenine···Thymine Base Pair Corresponds Neither to Watsonâ^'Crick Nor to Hoogsteen Structures. Molecular Dynamic/Quenching/AMBER and ab Initio beyond Hartreeâ^'Fock Studies. Journal of the American Chemical Society, 2000, 122, 3495-3499.	6.6	78
90	Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. Journal of Chemical Theory and Computation, 2013, 9, 707-721.	2.3	78

#	Article	IF	CITATIONS
91	Molecular Dynamics of Hemiprotonated Intercalated Four-Stranded i-DNA:Â Stable Trajectories on a Nanosecond Scale. Journal of the American Chemical Society, 1998, 120, 6147-6151.	6.6	77
92	Molecular Interactions of Nucleic Acid Bases. A Review of Quantum-Chemical Studies. Collection of Czechoslovak Chemical Communications, 2003, 68, 2231-2282.	1.0	77
93	Significant structural deformation of nucleic acid bases in stacked base pairs: an ab initio study beyond Hartree–Fock. Chemical Physics Letters, 1998, 288, 7-14.	1.2	76
94	The DNA and RNA sugar–phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Physical Chemistry Chemical Physics, 2012, 14, 15257.	1.3	76
95	Principles of RNA Base Pairing:Â Structures and Energies of the Trans Watsonâ^'Crick/Sugar Edge Base Pairs. Journal of Physical Chemistry B, 2005, 109, 11399-11410.	1.2	75
96	Metal ions in non-complementary DNA base pairs: an ab initio study of Cu(I), Ag(I), and Au(I) complexes with the cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 1999, 4, 537-545.	1.1	73
97	High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. Journal of Physical Chemistry A, 2014, 118, 719-736.	1.1	73
98	Structure, dynamics, and elasticity of free 16s rRNA helix 44 studied by molecular dynamics simulations. Biopolymers, 2006, 82, 504-520.	1.2	72
99	Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie, 2014, 105, 22-35.	1.3	72
100	Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding 1 1Edited by J. Doudna. Journal of Molecular Biology, 2001, 313, 1073-1091.	2.0	70
101	Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Research, 2013, 41, 2723-2735.	6.5	70
102	Free Energy Landscape of GAGA and UUCG RNA Tetraloops. Journal of Physical Chemistry Letters, 2016, 7, 4032-4038.	2.1	70
103	Unique Tertiary and Neighbor Interactions Determine Conservation Patterns of Cis Watson–Crick A/G Base-pairs. Journal of Molecular Biology, 2003, 330, 967-978.	2.0	69
104	Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2935-2944.	3.3	69
105	Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. Journal of Chemical Theory and Computation, 2012, 8, 2448-2460.	2.3	67
106	Dependence of A-RNA simulations on the choice of the force field and salt strength. Physical Chemistry Chemical Physics, 2009, 11, 10701.	1.3	66
107	Intramolecular flexibility of DNA bases in adenine–thymine and guanine–cytosine Watson–Crick base pairs. Journal of Molecular Structure, 1999, 477, 15-21.	1.8	65
108	Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Research, 2003, 31, 6942-6952.	6.5	65

#	Article	IF	CITATIONS
109	Structural Dynamics of Precursor and Product of the RNA Enzyme from the Hepatitis Delta Virus as Revealed by Molecular Dynamics Simulations. Journal of Molecular Biology, 2005, 351, 731-748.	2.0	65
110	Emergence of the First Catalytic Oligonucleotides in a Formamideâ€Based Origin Scenario. Chemistry - A European Journal, 2016, 22, 3572-3586.	1.7	65
111	Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Research, 2011, 39, 9789-9802.	6.5	64
112	Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. Journal of Physical Chemistry B, 2012, 116, 9899-9916.	1.2	64
113	Reverse Watsonâ^'Crick Isocytosineâ^'Cytosine and Guanineâ^'Cytosine Base Pairs Stabilized by the Formation of the Minor Tautomers of Bases. An ab Initio Study in the Gas Phase and in a Water Cluster. Journal of Physical Chemistry A, 1998, 102, 10374-10379.	1.1	62
114	Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics. Journal of Chemical Theory and Computation, 2015, 11, 3866-3877.	2.3	60
115	Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Research, 2014, 42, 7383-7394.	6.5	59
116	Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs. Journal of Chemical Physics, 1997, 106, 1472-1479.	1.2	58
117	Insight into G-DNA Structural Polymorphism and Folding from Sequence and Loop Connectivity through Free Energy Analysis. Journal of the American Chemical Society, 2011, 133, 14270-14279.	6.6	58
118	On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. Journal of the American Chemical Society, 2012, 134, 20788-20796.	6.6	58
119	Quantum Chemical Studies of Nucleic Acids: Can We Construct a Bridge to the RNA Structural Biology and Bioinformatics Communities?. Journal of Physical Chemistry B, 2010, 114, 15723-15741.	1.2	57
120	Sugar Edge/Sugar Edge Base Pairs in RNA:Â Stabilities and Structures from Quantum Chemical Calculations. Journal of Physical Chemistry B, 2005, 109, 18680-18689.	1.2	56
121	Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. Journal of Chemical Theory and Computation, 2014, 10, 1608-1622.	2.3	56
122	Theoretical Study on the Structure, Stability, and Electronic Properties of the Guanineâ^'Znâ^'Cytosine Base Pair in M-DNA. Journal of Physical Chemistry B, 2007, 111, 870-879.	1.2	55
123	Trans Hoogsteen/Sugar Edge Base Pairing in RNA. Structures, Energies, and Stabilities from Quantum Chemical Calculations. Journal of Physical Chemistry B, 2009, 113, 1743-1755.	1.2	55
124	Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. Journal of Chemical Theory and Computation, 2019, 15, 95-115.	2.3	55
125	Molecular Dynamics of DNA Quadruplex Molecules Containing Inosine, 6-Thioguanine and 6-Thiopurine. Biophysical Journal, 2001, 80, 455-468.	0.2	54
126	RNA Kink-Turns as Molecular Elbows: Hydration, Cation Binding, and Large-Scale Dynamics. Structure, 2006, 14, 825-835.	1.6	54

#	Article	IF	CITATIONS
127	Conformations of Flanking Bases in HIV-1 RNA DIS Kissing Complexes Studied by Molecular Dynamics. Biophysical Journal, 2007, 93, 3932-3949.	0.2	54
128	Protonation States of the Key Active Site Residues and Structural Dynamics of the <i>glmS</i> Riboswitch As Revealed by Molecular Dynamics. Journal of Physical Chemistry B, 2010, 114, 8701-8712.	1.2	54
129	Chemical Shifts in Nucleic Acids Studied by Density Functional Theory Calculations and Comparison with Experiment. Chemistry - A European Journal, 2012, 18, 12372-12387.	1.7	54
130	How to understand atomistic molecular dynamics simulations of <scp>RNA</scp> and protein– <scp>RNA</scp> complexes?. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1405.	3.2	54
131	How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes. ACS Catalysis, 2018, 8, 11352-11361.	5.5	54
132	Fitting Corrections to an RNA Force Field Using Experimental Data. Journal of Chemical Theory and Computation, 2019, 15, 3425-3431.	2.3	54
133	A Systematic ab Initio Study of the Hydration of Selected Palladium Square-Planar Complexes. A Comparison with Platinum Analogues. Journal of Physical Chemistry A, 2001, 105, 8086-8092.	1.1	53
134	Theoretical Study of the Guanine → 6-Thioguanine Substitution in Duplexes, Triplexes, and Tetraplexes. Journal of the American Chemical Society, 2004, 126, 14642-14650.	6.6	52
135	Geometrical and Electronic Structure Variability of the Sugarâ^'phosphate Backbone in Nucleic Acids. Journal of Physical Chemistry B, 2008, 112, 8188-8197.	1.2	52
136	Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description. Journal of Chemical Theory and Computation, 2009, 5, 1524-1544.	2.3	51
137	Structure of a Stable G-Hairpin. Journal of the American Chemical Society, 2017, 139, 3591-3594.	6.6	51
138	Protonation of Platinated Adenine Nucleobases. Gas Phase vs Condensed Phase Picture. Inorganic Chemistry, 2001, 40, 3269-3278.	1.9	50
139	The Influence of the Thymine C5 Methyl Group on Spontaneous Base Pair Breathing in DNA. Journal of Biological Chemistry, 2002, 277, 28491-28497.	1.6	50
140	Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. Journal of Chemical Theory and Computation, 2016, 12, 6077-6097.	2.3	50
141	Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. Journal of Chemical Theory and Computation, 2017, 13, 3911-3926.	2.3	50
142	Synthesis of (<scp>d</scp>)-erythrose from glycolaldehyde aqueous solutions under electric field. Chemical Communications, 2018, 54, 3211-3214.	2.2	50
143	The Influence of N7Guanine Modifications on the Strength of Watsonâ^'Crick Base Pairing and Guanine N1Acidity:Â Comparison of Gas-Phase and Condensed-Phase Trends. Journal of Physical Chemistry B, 2003, 107, 5349-5356.	1.2	49
144	Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Research, 2006, 34, 1326-1341.	6.5	49

#	Article	IF	CITATIONS
145	Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. Journal of Chemical Theory and Computation, 2011, 7, 2963-2980.	2.3	49
146	Extended molecular dynamics of a <i>c-kit</i> promoter quadruplex. Nucleic Acids Research, 2015, 43, 8673-8693.	6.5	49
147	Stabilization of the Purine•Purine•Pyrimidine DNA Base Triplets by Divalent Metal Cations. Journal of Biomolecular Structure and Dynamics, 1998, 16, 139-143.	2.0	48
148	The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study. Physical Chemistry Chemical Physics, 2001, 3, 4404-4411.	1.3	48
149	Two 1 : 1 binding modes for distamycin in the minor groove of d(GGCCAATTGG). FEBS Journal, 2002, 269, 2868-2877.	0.2	48
150	Ribosomal RNA Kink-turn Motif—A Flexible Molecular Hinge. Journal of Biomolecular Structure and Dynamics, 2004, 22, 183-193.	2.0	48
151	Long-Residency Hydration, Cation Binding, and Dynamics of Loop E/Helix IV rRNA-L25 Protein Complex. Biophysical Journal, 2004, 87, 3397-3412.	0.2	48
152	Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Nucleic Acids Research, 2010, 38, 1325-1340.	6.5	48
153	Prebiotic synthesis of nucleic acids and their building blocks at the atomic level – merging models and mechanisms from advanced computations and experiments. Physical Chemistry Chemical Physics, 2016, 18, 20047-20066.	1.3	48
154	Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Research, 2016, 44, 6452-6470.	6.5	48
155	Nanosecond Molecular Dynamics of Zipper-like DNA Duplex Structures Containing Sheared G·A Mismatch Pairs. Journal of the American Chemical Society, 2000, 122, 7564-7572.	6.6	47
156	Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Research, 2015, 43, gkv994.	6.5	47
157	General Base Catalysis for Cleavage by the Active-Site Cytosine of the Hepatitis Delta Virus Ribozyme: QM/MM Calculations Establish Chemical Feasibility. Journal of Physical Chemistry B, 2008, 112, 11177-11187.	1.2	46
158	An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5′-UAA/5′-GAN Internal Loops Studied by Molecular Dynamics Methods. Journal of Chemical Theory and Computation, 2010, 6, 910-929.	2.3	46
159	Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGGTGGTGG) Quadruplex DNA Studied by Large-Scale Explicit Solvent Simulations. Journal of Chemical Theory and Computation, 2010, 6, 3003-3014.	2.3	46
160	Thermodynamic characteristics for the formation of H-bonded DNA base pairs. Chemical Physics Letters, 1996, 261, 379-384.	1.2	45
161	How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists. Methods, 2013, 64, 3-11.	1.9	45
162	Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with Îμ/ζ Force Field Reparametrizations. Journal of Physical Chemistry B, 2015, 119, 4220-4229.	1.2	45

#	Article	IF	CITATIONS
163	Interactions of Hydrated IIa and IIb Group Metal Cations with Thioguanine-Cytosine DNA Base Pair: Ab initio and Density Functional Theory Investigation of Polarization Effects, Differences Among Cations, and Flexibility of the Cation Hydration Shell. Journal of Biomolecular Structure and Dynamics, 1999, 17, 61-77.	2.0	44
164	Formamide-Based Prebiotic Synthesis of Nucleobases: A Kinetically Accessible Reaction Route. Journal of Physical Chemistry A, 2012, 116, 720-726.	1.1	44
165	<i>Ab initio</i> spectroscopy of water under electric fields. Physical Chemistry Chemical Physics, 2019, 21, 21205-21212.	1.3	44
166	Molecular Mechanism of preQ ₁ Riboswitch Action: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2012, 116, 12721-12734.	1.2	43
167	Are the Hydrogen Bonds of RNA (Aâ‹U) Stronger Than those of DNA (Aâ‹T)? A Quantum Mechanics Study. Chemistry - A European Journal, 2005, 11, 5062-5066.	1.7	42
168	Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Research, 2012, 40, 6290-6303.	6.5	42
169	Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. Journal of Physical Chemistry B, 2013, 117, 1872-1879.	1.2	42
170	Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Research, 2019, 47, 7276-7293.	6.5	42
171	DNA Deformability at the Base Pair Level. Journal of the American Chemical Society, 2004, 126, 4124-4125.	6.6	41
172	Theoretical Calculation of the NMR Spinâ~'Spin Coupling Constants and the NMR Shifts Allow Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal Cation to Guanine. Journal of the American Chemical Society, 2004, 126, 663-672.	6.6	41
173	Copper Cation Interactions with Biologically Essential Types of Ligands:Â A Computational DFT Study. Journal of Physical Chemistry A, 2006, 110, 4795-4809.	1.1	40
174	Leading RNA Tertiary Interactions:  Structures, Energies, and Water Insertion of A-Minor and P-Interactions. A Quantum Chemical View. Journal of Physical Chemistry B, 2007, 111, 9153-9164.	1.2	40
175	Molecular dynamics suggest multifunctionality of an adenine imino group in acid-base catalysis of the hairpin ribozyme. Rna, 2009, 15, 560-575.	1.6	40
176	Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts. Physical Chemistry Chemical Physics, 2017, 19, 20420-20429.	1.3	40
177	Sequence dependent intrinsic deformability of the DNA base amino groups. An ab initio quantum chemical analysis. Computational and Theoretical Chemistry, 1994, 304, 35-40.	1.5	39
178	Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs. Journal of Chemical Theory and Computation, 2009, 5, 2088-2100.	2.3	39
179	Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. Journal of Chemical Theory and Computation, 2017, 13, 2458-2480.	2.3	39
180	Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. Journal of Chemical Theory and Computation, 2020, 16, 3936-3946.	2.3	39

#	Article	IF	CITATIONS
181	Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2020-2030.	1.1	38
182	G.C. Base Pair in Parallel-Stranded DNA—A Novel Type of Base Pairing: An ab initio Quantum Chemical Study. Journal of Biomolecular Structure and Dynamics, 1994, 12, 671-680.	2.0	37
183	Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Research, 2010, 38, 6247-6264.	6.5	37
184	Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nature Communications, 2021, 12, 428.	5.8	37
185	Different intrastrand and interstrand contributions to stacking account for roll variations at the alternating purine-pyrimidine sequences in A-DNA and A-RNA. Journal of Molecular Biology, 1991, 221, 761-764.	2.0	36
186	Interactions of hydrated divalent metal cations with nucleic acid bases. How to relate the gas phase data to solution situation and binding selectivity in nucleic acids. Physical Chemistry Chemical Physics, 2004, 6, 2772-2780.	1.3	36
187	Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nature Communications, 2018, 9, 4073.	5.8	36
188	Spectroscopic and Theoretical Insights into Sequence Effects of Aminofluorene-Induced Conformational Heterogeneity and Nucleotide Excision Repair,. Biochemistry, 2007, 46, 11263-11278.	1.2	35
189	Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Scientific Reports, 2017, 7, 14709.	1.6	35
190	Nonempirical ab initio calculations on DNA base pairs. Chemical Physics, 1996, 204, 365-372.	0.9	34
191	Theoretical Study on the Factors Controlling the Stability of the Borate Complexes of Ribose, Arabinose, Lyxose, and Xylose. Chemistry - A European Journal, 2008, 14, 9990-9998.	1.7	34
192	Interactions of the "pianoâ€stool―[ruthenium(II) (η ⁶ â€arene)(en)CL] ⁺ complexes with water and nucleobases; ab initio and DFT study. Journal of Computational Chemistry, 2009, 30, 1758-1770.	1.5	34
193	Ultrafast excited-state dynamics of isocytosine. Physical Chemistry Chemical Physics, 2016, 18, 20208-20218.	1.3	34
194	QM/MM Calculations on Protein–RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation, 2018, 14, 5419-5433.	2.3	34
195	Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. Journal of Chemical Theory and Computation, 2022, 18, 2642-2656.	2.3	34
196	Close mutual contacts of the amino groups in DNA. International Journal of Biological Macromolecules, 1994, 16, 3-6.	3.6	33
197	Metal-Mediated Deamination of Cytosine: Experiment and DFT Calculations. Angewandte Chemie - International Edition, 2004, 43, 5396-5399.	7.2	33
198	Structure and Dynamics of the ApA, ApC, CpA, and CpC RNA Dinucleoside Monophosphates Resolved with NMR Scalar Spinâ~'Spin Couplings. Journal of Physical Chemistry B, 2009, 113, 1182-1191.	1.2	33

#	Article	IF	CITATIONS
199	On the Role of the cis Hoogsteen:Sugar-Edge Family of Base Pairs in Platforms and Triplets—Quantum Chemical Insights into RNA Structural Biology. Journal of Physical Chemistry B, 2010, 114, 3307-3320.	1.2	33
200	QM/MM Studies of Hairpin Ribozyme Self-Cleavage Suggest the Feasibility of Multiple Competing Reaction Mechanisms. Journal of Physical Chemistry B, 2011, 115, 13911-13924.	1.2	33
201	Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar–phosphate backbone and their comparison with modern density functional theory. Physical Chemistry Chemical Physics, 2013, 15, 7295.	1.3	33
202	Are Waters around RNA More than Just a Solvent? – An Insight from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10, 401-411.	2.3	33
203	Cationâ€"ï€ and Amino-Acceptor Interactions Between Hydrated Metal Cations and DNA Bases. A Quantum-Chemical View. Journal of Biomolecular Structure and Dynamics, 2000, 17, 1087-1096.	2.0	32
204	QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin–Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. Journal of Chemical Theory and Computation, 2014, 10, 2615-2629.	2.3	32
205	Can We Execute Reliable MM-PBSA Free Energy Computations of Relative Stabilities of Different Guanine Quadruplex Folds?. Journal of Physical Chemistry B, 2016, 120, 2899-2912.	1.2	32
206	Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch. Journal of Chemical Physics, 2017, 147, 152715.	1.2	32
207	Structural Dynamics of the Box C/D RNA Kink-Turn and Its Complex with Proteins: The Role of the A-Minor 0 Interaction, Long-Residency Water Bridges, and Structural Ion-Binding Sites Revealed by Molecular Simulations. Journal of Physical Chemistry B, 2010, 114, 10581-10593.	1.2	31
208	Electron-Driven Proton Transfer Along H ₂ O Wires Enables Photorelaxation of ï€ïƒ* States in Chromophore–Water Clusters. Journal of Physical Chemistry Letters, 2015, 6, 1467-1471.	2.1	31
209	Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences. Journal of Chemical Information and Modeling, 2017, 57, 275-287.	2.5	31
210	TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Scientific Reports, 2016, 6, 23199.	1.6	31
211	Relationships among Rise, Cup, Roll and Stagger in DNA Suggested by Empirical Potential Studies of Base Stacking. Journal of Biomolecular Structure and Dynamics, 1993, 11, 27-41.	2.0	30
212	Stability of hydrolytic arsenic species in aqueous solutions: As ³⁺ <i>vs.</i> As ⁵⁺ . Physical Chemistry Chemical Physics, 2018, 20, 23272-23280.	1.3	30
213	Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. Journal of Chemical Theory and Computation, 2021, 17, 6292-6301.	2.3	30
214	Elastic properties of ribosomal RNA building blocks: molecular dynamics of the GTPase-associated center rRNA. Nucleic Acids Research, 2007, 35, 4007-4017.	6.5	29
215	The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis. Nucleic Acids Research, 2007, 35, 1933-1946.	6.5	29
216	Prebiotic Routes to Nucleosides: A Quantum Chemical Insight into the Energetics of the Multistep Reaction Pathways. Chemistry - A European Journal, 2011, 17, 847-854.	1.7	29

#	Article	IF	CITATIONS
217	Photochemistry of 2-Aminooxazole, a Hypothetical Prebiotic Precursor of RNA Nucleotides. Journal of Physical Chemistry Letters, 2013, 4, 2785-2788.	2.1	29
218	Untemplated Nonenzymatic Polymerization of 3′,5′cGMP: A Plausible Route to 3′,5′-Linked Oligonucleotides in Primordia. Journal of Physical Chemistry B, 2015, 119, 2979-2989.	1.2	29
219	Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Research, 2018, 46, 8754-8771.	6.5	29
220	UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. Journal of Chemical Theory and Computation, 2020, 16, 7601-7617.	2.3	29
221	Tautomeric Equilibrium, Stability, and Hydrogen Bonding in 2â€~-Deoxyguanosine Monophosphate Complexed with Mg ²⁺ . Journal of Physical Chemistry B, 2008, 112, 150-157.	1.2	28
222	The role of an active site Mg ²⁺ in HDV ribozyme self-cleavage: insights from QM/MM calculations. Physical Chemistry Chemical Physics, 2015, 17, 670-679.	1.3	28
223	Molecular Dynamics Simulation Study of Parallel Telomeric DNA Quadruplexes at Different Ionic Strengths: Evaluation of Water and Ion Models. Journal of Physical Chemistry B, 2016, 120, 7380-7391.	1.2	28
224	Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Research, 2017, 45, gkx004.	6.5	28
225	Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Research, 2017, 45, 8046-8063.	6.5	28
226	Structural Dynamics of Lateral and Diagonal Loops of Human Telomeric G-Quadruplexes in Extended MD Simulations. Journal of Chemical Theory and Computation, 2018, 14, 5011-5026.	2.3	28
227	Impact of an extruded nucleotide on cleavage activity and dynamic catalytic core conformation of the hepatitis delta virus ribozyme. Biopolymers, 2007, 85, 392-406.	1.2	27
228	Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2′-OH Group of Ribose. Journal of Chemical Theory and Computation, 2009, 5, 1166-1179.	2.3	27
229	Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Research, 2009, 37, 7321-7331.	6.5	27
230	A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. Journal of Chemical Theory and Computation, 2012, 8, 3232-3242.	2.3	27
231	Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. Journal of Physical Chemistry B, 2017, 121, 2420-2433.	1.2	27
232	Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chemical Science, 2018, 9, 3131-3140.	3.7	27
233	The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology. Nucleic Acids Research, 2021, 49, 9548-9559.	6.5	27
234	Elbow Flexibility of the kt38 RNA Kink-Turn Motif Investigated by Free-Energy Molecular Dynamics Simulations. Biophysical Journal, 2009, 97, 2004-2013.	0.2	26

#	Article	IF	CITATIONS
235	Noncanonical Hydrogen Bonding in Nucleic Acids. Benchmark Evaluation of Key Base–Phosphate Interactions in Folded RNA Molecules Using Quantum-Chemical Calculations and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2011, 115, 11277-11292.	1.1	26
236	An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Research, 2018, 46, 6528-6543.	6.5	26
237	A-Minor Tertiary Interactions in RNA Kink-Turns. Molecular Dynamics and Quantum Chemical Analysis. Journal of Physical Chemistry B, 2011, 115, 13897-13910.	1.2	25
238	Understanding the Sequence Preference of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. Journal of Chemical Theory and Computation, 2012, 8, 335-347.	2.3	25
239	Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Physical Chemistry Chemical Physics, 2015, 17, 1399-1410.	1.3	25
240	Comment on "Electron-Correlated Calculations of Electric Properties of Nucleic Acid Bases― Journal of Physical Chemistry B, 1997, 101, 8038-8039.	1.2	24
241	Sugar Pucker Modulates the Cross-Correlated Relaxation Rates across the Glycosidic Bond in DNA. Journal of the American Chemical Society, 2005, 127, 14663-14667.	6.6	24
242	Calculation of Structural Behavior of Indirect NMR Spinâ^'Spin Couplings in the Backbone of Nucleic Acids. Journal of Physical Chemistry B, 2006, 110, 22894-22902.	1.2	24
243	Understanding the role of base stacking in nucleic acids. MD and QM analysis of tandem GA base pairs in RNA duplexes. Physical Chemistry Chemical Physics, 2012, 14, 12580.	1.3	24
244	Mechanical Model of DNA Allostery. Journal of Physical Chemistry Letters, 2014, 5, 3831-3835.	2.1	24
245	Energies and 2′-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations. Journal of Chemical Theory and Computation, 2014, 10, 463-480.	2.3	24
246	Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch. Nature Communications, 2019, 10, 4304.	5.8	24
247	One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology, 2020, 20, 1476-1488.	1.5	24
248	2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nature Communications, 2021, 12, 3018.	5.8	24
249	The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nature Communications, 2022, 13, .	5.8	24
250	On the Stabilization of Ribose by Silicate Minerals. Astrobiology, 2011, 11, 115-121.	1.5	23
251	Isosteric and Nonisosteric Base Pairs in RNA Motifs: Molecular Dynamics and Bioinformatics Study of the Sarcin–Ricin Internal Loop. Journal of Physical Chemistry B, 2013, 117, 14302-14319.	1.2	23
252	Aromatic side-chain conformational switch on the surface of the RNA Recognition Motif enables RNA discrimination. Nature Communications, 2017, 8, 654.	5.8	23

#	Article	IF	CITATIONS
253	RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution. Nature Communications, 2019, 10, 4102.	5.8	23
254	Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes. Journal of Chemical Theory and Computation, 2016, 12, 2000-2016.	2.3	22
255	Novel electrochemical route to cleaner fuel dimethyl ether. Scientific Reports, 2017, 7, 6901.	1.6	22
256	Mobilities of iodide anions in aqueous solutions for applications in natural dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2018, 20, 13038-13046.	1.3	22
257	A- to B-DNA Transition in AMBER Force Fields and Its Coupling to Sugar Pucker. Journal of Chemical Theory and Computation, 2018, 14, 319-328.	2.3	22
258	Structural and dynamic effects of single 7-hydro-8-oxoguanine bases located in a frameshift target DNA sequence. Biophysical Chemistry, 2005, 118, 31-41.	1.5	21
259	Indirect NMR Spinâ^'Spin Coupling Constants 3J(P,C) and 2J(P,H) across the Pâ^'O···Hâ^'C Link Can Be Used for Structure Determination of Nucleic Acids. Journal of the American Chemical Society, 2006, 128, 6823-6828.	6.6	21
260	Water–chromophore electron transfer determines the photochemistry of cytosine and cytidine. Physical Chemistry Chemical Physics, 2017, 19, 17531-17537.	1.3	21
261	Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. Journal of Biological Chemistry, 2018, 293, 191-202.	1.6	21
262	Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 9202-9208.	1.5	21
263	Short but Weak: The Zâ€ÐNA Loneâ€Pairâ‹â‹ï€ Conundrum Challenges Standard Carbon Van der Waals R Angewandte Chemie - International Edition, 2020, 59, 16553-16560.	eadii. 7.2	21
264	Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. Journal of Chemical Theory and Computation, 2022, 18, 4490-4502.	2.3	21
265	Tautomerism of xanthine: The second-order MÃ~ller-Plesset study. Structural Chemistry, 1995, 6, 281-286.	1.0	20
266	How Nucleobases Rotate When Bonded to a Metal Ion:Â Detailed View from an Ab Initio Quantum Chemical Study of a Cytosine Complex oftrans-a2PtII. Journal of Physical Chemistry B, 2001, 105, 12171-12179.	1.2	20
267	Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. Journal of Physical Chemistry B, 2015, 119, 15176-15190.	1.2	20
268	Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1072-1090.	1.1	20
269	Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li ⁺ , Na ⁺ , K ⁺ , and Rb ⁺ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential. Journal of Physical Chemistry B. 2017, 121, 3997-4014.	1.2	20
270	2,4-diselenouracil tautomers: structures, energies, and a comparison with uracil and 2,4-dithiouracil. Computational and Theoretical Chemistry, 1996, 388, 237-243.	1.5	19

#	Article	IF	CITATIONS
271	Loss of Hoogsteen Pairing Ability upon N1 Adenine Platinum Binding. Inorganic Chemistry, 2002, 41, 2855-2863.	1.9	19
272	Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics Journal of Physical Chemistry B, 2015, 119, 9477-9495.	1.2	19
273	Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label. Biochemistry, 2016, 55, 360-372.	1.2	19
274	Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129651.	1.1	19
275	Insights into G-Quadruplex–Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. Journal of Chemical Theory and Computation, 2021, 17, 1883-1899.	2.3	19
276	Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Topics in Catalysis, 2022, 65, 40-58.	1.3	19
277	Non-Enzymatic Oligomerization of 3', 5' Cyclic AMP. PLoS ONE, 2016, 11, e0165723.	1.1	19
278	Stability of 2′,3′ and 3′,5′ cyclic nucleotides in formamide and in water: a theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Physical Chemistry Chemical Physics, 2017, 19, 1817-1825.	1.3	18
279	Photodynamics of alternative DNA base isoguanine. Physical Chemistry Chemical Physics, 2019, 21, 13474-13485.	1.3	18
280	Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. Journal of Physical Chemistry A, 2020, 124, 10856-10869.	1.1	18
281	W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model. Journal of Chemical Theory and Computation, 2021, 17, 3495-3509.	2.3	18
282	Interactions of DNA Bases and the Structure of DNA: A Nonempirical <i>Ab Initio</i> Study with Inclusion of Electron Correlation. Computational Chemistry - Reviews of Current Trends, 1996, , 185-218.	0.4	17
283	Conformational Energies of DNA Sugarâ^'Phosphate Backbone: Reference QM Calculations and a Comparison with Density Functional Theory and Molecular Mechanics. Journal of Chemical Theory and Computation, 2010, 6, 3817-3835.	2.3	17
284	NMR Cross-Correlated Relaxation Rates Reveal Ion Coordination Sites in DNA. Journal of the American Chemical Society, 2011, 133, 13790-13793.	6.6	17
285	Bioinformatics and Molecular Dynamics Simulation Study of L1 Stalk Non-Canonical rRNA Elements: Kink-Turns, Loops, and Tetraloops. Journal of Physical Chemistry B, 2013, 117, 5540-5555.	1.2	17
286	Excited-state hydrogen atom abstraction initiates the photochemistry of β-2′-deoxycytidine. Chemical Science, 2015, 6, 2035-2043.	3.7	17
287	MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, <scp>l</scp> -Histidine Ligand, and Mg ²⁺ . Journal of Chemical Theory and Computation, 2017, 13, 5658-5670.	2.3	17
288	Dust Motions in Magnetized Turbulence: Source of Chemical Complexity. Astrophysical Journal Letters, 2018, 866, L23.	3.0	17

#	Article	IF	CITATIONS
289	Stereocontrolled Synthesis of (â^')-Bactobolin A. Journal of the American Chemical Society, 2020, 142, 7306-7311.	6.6	17
290	An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. Journal of Chemical Theory and Computation, 2010, 2010, 910-929.	2.3	17
291	Ribozyme Activity of RNA Nonenzymatically Polymerized from 3′,5′-Cyclic GMP. Entropy, 2013, 15, 5362-5383.	1.1	16
292	Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. Journal of Physical Chemistry B, 2016, 120, 10635-10648.	1.2	16
293	Nonenzymatic Oligomerization of 3′,5′â€Cyclic CMP Induced by Proton and UV Irradiation Hints at a Nonfastidious Origin of RNA. ChemBioChem, 2017, 18, 1535-1543.	1.3	16
294	Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. Journal of Chemical Theory and Computation, 2020, 16, 2857-2863.	2.3	16
295	Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. Journal of Chemical Theory and Computation, 2020, 16, 3447-3463.	2.3	16
296	Theoretical Model of the n-Propylbenzene Formation in the Benzene Isopropylation over Zeolites. An Anti-Markovnikov-Type Proton Addition Promoted by the Steric Effect of MFI and MEL Zeolite Channels. Journal of Physical Chemistry B, 1998, 102, 7169-7175.	1.2	15
297	Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. Rna, 2014, 20, 1112-1128.	1.6	15
298	Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life, 2018, 8, 24.	1.1	15
299	Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 8121-8132.	1.3	15
300	Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields. Molecules, 2020, 25, 3371.	1.7	15
301	Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chemistry - A European Journal, 2020, 26, 12075-12080.	1.7	15
302	Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molecular Dynamics and NMR Spectroscopy: The Role of Hydration. Journal of Physical Chemistry B, 2021, 125, 7691-7705.	1.2	15
303	Gâ€Quadruplex Formation by DNA Sequences Deficient in Guanines: Two Tetrad Parallel Quadruplexes Do Not Fold Intramolecularly. Chemistry - A European Journal, 2021, 27, 12115-12125.	1.7	15
304	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCE <scp>ngine</scp>): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics, 2021, 155, 204801.	1.2	15
305	Aromatic Base Stacking in DNA: Fromab initioCalculations to Molecular Dynamics Simulations. Journal of Biomolecular Structure and Dynamics, 2000, 17, 1-24.	2.0	14
306	On the Use of Molecular Dynamics Simulations for Probing Allostery through DNA. Biophysical Journal, 2016, 110, 874-876.	0.2	14

#	Article	IF	CITATIONS
307	New evolutionary insights into the nonâ€enzymatic origin of <scp>RNA</scp> oligomers. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1400.	3.2	14
308	Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study. PLoS Computational Biology, 2018, 14, e1006642.	1.5	14
309	Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands. Chemical Research in Toxicology, 2020, 33, 967-974.	1.7	14
310	Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Baseâ€Pair Analogues. Chemistry - A European Journal, 2010, 16, 3057-3065.	1.7	13
311	Theoretical studies of the mechanism of 2-aminooxazole formation under prebiotically plausible conditions. Physical Chemistry Chemical Physics, 2013, 15, 7812.	1.3	13
312	Solvent effects on the photochemistry of 4-aminoimidazole-5-carbonitrile, a prebiotically plausible precursor of purines. Physical Chemistry Chemical Physics, 2014, 16, 17617-17626.	1.3	13
313	Molecular Mechanism of Diaminomaleonitrile to Diaminofumaronitrile Photoisomerization: An Intermediate Step in the Prebiotic Formation of Purine Nucleobases. Chemistry - A European Journal, 2014, 20, 2515-2521.	1.7	13
314	Solvation effects alter the photochemistry of 2-thiocytosine. Chemical Physics, 2018, 515, 502-508.	0.9	13
315	Comment on "Evaluating Unexpectedly Short Non-covalent Distances in X-ray Crystal Structures of Proteins with Electronic Structure Analysis― Journal of Chemical Information and Modeling, 2019, 59, 3605-3608.	2.5	13
316	Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Chemical Communications, 2019, 55, 10563-10566.	2.2	13
317	Theoretical Study of the Scalar Coupling Constants across the Noncovalent Contacts in RNA Base Pairs:  The cis- and trans-Watsonâ^Crick/Sugar Edge Base Pair Family. Journal of Physical Chemistry B, 2007, 111, 10813-10824.	1.2	12
318	Conformational transitions of flanking purines in HIVâ€1 RNA dimerization initiation site kissing complexes studied by CHARMM explicit solvent molecular dynamics. Biopolymers, 2008, 89, 732-746.	1.2	12
319	Photorelaxation of imidazole and adenine via electron-driven proton transfer along H ₂ O wires. Faraday Discussions, 2016, 195, 237-251.	1.6	12
320	Enhanced conductivity of water at the electrified air–water interface: a DFT-MD characterization. Physical Chemistry Chemical Physics, 2020, 22, 10438-10446.	1.3	12
321	Solution Structure of the Dodecamer d-(CATGGGCC-CATG) ₂ is B-DNA. Experimental and Molecular Dynamics Study. Journal of Biomolecular Structure and Dynamics, 2001, 19, 159-174.	2.0	11
322	Comment on "Computational Model for Predicting Experimental RNA and DNA Nearest-Neighbor Free Energy Rankings― Journal of Physical Chemistry B, 2012, 116, 8331-8332.	1.2	11
323	rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. Journal of Chemical Theory and Computation, 2017, 13, 3359-3371.	2.3	11
324	Photostability of oxazoline RNA-precursors in UV-rich prebiotic environments. Chemical Communications, 2018, 54, 13407-13410.	2.2	11

#	Article	IF	CITATIONS
325	Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments. Journal of Physical Chemistry B, 2021, 125, 825-840.	1.2	11
326	MD simulations reveal the basis for dynamic assembly of Hfq–RNA complexes. Journal of Biological Chemistry, 2021, 296, 100656.	1.6	11
327	Acid atalyzed RNAâ€Oligomerization from 3',5' GMP. Chemistry - A European Journal, 2021, 27, 1	75 8.1 7-175	85.11
328	Interaction between As(III) and Simple Thioacids in Water: An Experimental and ab Initio Molecular Dynamics Investigation. Journal of Physical Chemistry B, 2019, 123, 6090-6098.	1.2	10
329	Meteoriteâ€Assisted Phosphorylation of Adenosine Under Proton Irradiation Conditions. ChemSystemsChem, 2020, 2, e1900039.	1.1	10
330	Arsenic–nucleotides interactions: an experimental and computational investigation. Dalton Transactions, 2020, 49, 6302-6311.	1.6	10
331	Base Stacking and Base Pairing. , 2006, , 343-388.		10
332	Structure, Energetics, Vibrational Frequencies and Charge Transfer of Base Pairs, Nucleoside Pairs, Nucleotide Pairs and B-DNA Pairs of Trinucleotides: <i>ab initio</i> HF/MINI-1 and Empirical Force Field Study. Journal of Biomolecular Structure and Dynamics, 2000, 17, 1077-1086.	2.0	9
333	Mechanism of Action of Anticancer Titanocene Derivatives:  An Insight from Quantum Chemical Calculations. Journal of Physical Chemistry B, 2006, 110, 19632-19636.	1.2	9
334	Theoretical modeling on the kinetics of the arsenate-ester hydrolysis: implications to the stability of As-DNA. Physical Chemistry Chemical Physics, 2011, 13, 10869.	1.3	9
335	On the Geometry and Electronic Structure of the As-DNA Backbone. Journal of Physical Chemistry Letters, 2011, 2, 389-392.	2.1	9
336	Room temperature spontaneous conversion of OCS to CO2 on the anatase TiO2 surface. Chemical Communications, 2014, 50, 7712-7715.	2.2	9
337	Role of S-turn2 in the Structure, Dynamics, and Function of Mitochondrial Ribosomal A-Site. A Bioinformatics and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2014, 118, 6687-6701.	1.2	9
338	Tetraloopâ€like Geometries Could Form the Basis of the Catalytic Activity of the Most Ancient Ribooligonucleotides. Chemistry - A European Journal, 2015, 21, 3596-3604.	1.7	9
339	Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site. Biochimie, 2015, 112, 96-110.	1.3	9
340	Chemical feasibility of the general acid/base mechanism of <i>glmS</i> ribozyme self leavage. Biopolymers, 2015, 103, 550-562.	1.2	9
341	Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry. ChemBioChem, 2018, 19, 22-25.	1.3	9
342	Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. Journal of Physical Chemistry A, 2019, 123, 9209-9222.	1.1	9

#	Article	IF	CITATIONS
343	Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein–RNA Complexes. Methods in Enzymology, 2019, 614, 393-422.	0.4	9
344	Surprisingly broad applicability of the cc-pV <i>n</i> Z-F12 basis set for ground and excited states. Journal of Chemical Physics, 2020, 152, 214104.	1.2	9
345	Four Ways to Oligonucleotides Without Phosphoimidazolides. Journal of Molecular Evolution, 2016, 82, 5-10.	0.8	8
346	Highly accurate equilibrium structure of the C2h symmetric N1â€ŧoâ€O2 hydrogenâ€bonded uracilâ€dimer. International Journal of Quantum Chemistry, 2018, 118, e25624.	1.0	8
347	Aromatic DNA Base Stacking and H-Bonding. Computational Chemistry - Reviews of Current Trends, 2000, , 171-210.	0.4	7
348	Effect of local sugar and base geometry on 13C and 15N magnetic shielding anisotropy in DNA nucleosides. Journal of Biomolecular NMR, 2008, 42, 209-223.	1.6	7
349	Insight into formation propensity of pseudocircular DNA G-hairpins. Nucleic Acids Research, 2021, 49, 2317-2332.	6.5	7
350	Nonenzymatic, Templateâ€Free Polymerization of 3',5' Cyclic Guanosine Monophosphate on Mineral Surfaces. ChemSystemsChem, 2021, 3, .	1.1	7
351	Understanding the behaviour of carnosine in aqueous solution: an experimental and quantum-based computational investigation on acid–base properties and complexation mechanisms with Ca ²⁺ and Mg ²⁺ . New Journal of Chemistry, 2021, 45, 20352-20364.	1.4	7
352	How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex. Nucleic Acids Research, 2012, 40, 7573-7583.	6.5	6
353	Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Physical Chemistry Chemical Physics, 2015, 17, 5887-5900.	1.3	6
354	UV-induced hydrogen transfer in DNA base pairs promoted by dark nπ* states. Chemical Communications, 2020, 56, 201-204.	2.2	6
355	Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. Annual Reports in Medicinal Chemistry, 2020, , 197-241.	0.5	6
356	Highâ€Energy Protonâ€Beamâ€Induced Polymerization/Oxygenation of Hydroxynaphthalenes on Meteorites and Nitrogen Transfer from Urea: Modeling Insoluble Organic Matter?. Chemistry - A European Journal, 2020, 26, 14919-14928.	1.7	6
357	Atomistic simulations of the free-energy landscapes of interstellar chemical reactions: the case of methyl isocyanate. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1565-1570.	1.6	6
358	Interaction of Metal Cations with Nucleic Acids and their Building Units. , 2006, , 389-410.		6
359	Exploring Sequence Space to Design Controllable G-Quadruplex Topology Switches. CCS Chemistry, 2022, 4, 3036-3050.	4.6	6
360	Hydrolysis of Al3+ in Aqueous Solutions: Experiments and Ab Initio Simulations. Liquids, 2022, 2, 26-38.	0.8	6

#	Article	IF	CITATIONS
361	MP2 and CCSD(T) calculations on Hî—,bonded and stacked formamide…formamide and formamidine…formamidine dimers. Computational and Theoretical Chemistry, 1996, 388, 115-120.	1.5	5
362	Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides. Journal of Physical Chemistry Letters, 2021, 12, 6707-6713.	2.1	5
363	Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair÷·ÄE€ Contacts in Nucleic Acids. Journal of Chemical Information and Modeling, 2021, 61, 5644-5657.	2.5	5
364	Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. Journal of Physical Chemistry B, 2017, 121, 10828-10840.	1.2	4
365	Structural and Energetic Compatibility: The Driving Principles of Molecular Evolution. Astrobiology, 2019, 19, 1117-1122.	1.5	4
366	Sustainability and Chaos in the Abiotic Polymerization of 3′,5′ Cyclic Guanosine Monophosphate: The Role of Aggregation. ChemSystemsChem, 2021, 3, e2000011.	1.1	4
367	Questions and Answers Related to the Prebiotic Production of Oligonucleotide Sequences from 3′,5′ Cyclic Nucleotide Precursors. Life, 2021, 11, 800.	1.1	4
368	Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. , 2012, , 1277-1308.		3
369	Structural and energetic factors controlling the enantioselectivity of dinucleotide formation under prebiotic conditions. Physical Chemistry Chemical Physics, 2013, 15, 6235.	1.3	3
370	Electron-driven proton transfer enables nonradiative photodeactivation in microhydrated 2-aminoimidazole. Faraday Discussions, 2018, 212, 345-358.	1.6	3
371	Photoinduced water–chromophore electron transfer causes formation of guanosine photodamage. Physical Chemistry Chemical Physics, 2022, 24, 8217-8224.	1.3	3
372	Binding of Arsenic by Common Functional Groups: An Experimental and Quantum-Mechanical Study. Applied Sciences (Switzerland), 2022, 12, 3210.	1.3	3
373	Towards the Elucidation of the Activation of Cisplatin in Anticancer Treatment. Computational Chemistry - Reviews of Current Trends, 2006, , 265-321.	0.4	2
374	Role of Fine Structural Dynamics in Recognition of Histone H3 by HP1Î ³ (CSD) Dimer and Ability of Force Fields to Describe Their Interaction Network. Journal of Chemical Theory and Computation, 2019, 15, 5659-5673.	2.3	2
375	Stabilization of Short Oligonucleotides in the Prebiotic Mix: The Potential Role of Amino Alcohols. ChemSystemsChem, 2019, 1, e1900006.	1.1	2
376	Residues flanking the ARKme3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129771.	1.1	2
377	Thermal Decomposition of Cocaine and Methamphetamine Investigated by Infrared Spectroscopy and Quantum Chemical Simulations. ACS Omega, 2021, 6, 14447-14457.	1.6	2
378	Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results. , 1997, 18, 1136.		2

#	Article	IF	CITATIONS
379	DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations. , 1996, 57, 959.		2
380	<i>Ab initio</i> molecular dynamics simulations and experimental speciation study of levofloxacin under different pH conditions. Physical Chemistry Chemical Physics, 2021, 23, 24403-24412.	1.3	2
381	Molecular dissociation and proton transfer in aqueous methane solution under an electric field. Physical Chemistry Chemical Physics, 2021, 23, 25649-25657.	1.3	2
382	Early steps of oxidative damage in DNA quadruplexes are position-dependent: Quantum mechanical and molecular dynamics analysis of human telomeric sequence containing ionized guanine. International Journal of Biological Macromolecules, 2022, 194, 882-894.	3.6	2
383	Formamide-Based Post-impact Thermal Prebiotic Synthesis in Simulated Craters: Intermediates, Products and Mechanism. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	2
384	Four-Stranded Intercalated Cytosine-Rich Molecules: Novel Insights into DNA Structure and Stability. Nucleosides & Nucleotides, 1999, 18, 1583-1585.	0.5	1
385	Is formamide nature's choice to create life?. Physics of Life Reviews, 2012, 9, 109-110.	1.5	1
386	Computational Modeling of DNA and RNA Fragments. , 2017, , 1803-1826.		1
387	Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. , 2017, , 1827-1874.		1
388	Short but Weak: The Zâ€ÐNA Loneâ€Pairâ‹â‹ï€ Conundrum Challenges Standard Carbon Van der Waals R Angewandte Chemie, 2020, 132, 16696-16703.	adii. 1.6	1
389	Ariel – a window to the origin of life on early earth?. Experimental Astronomy, 2020, , 1.	1.6	1
390	Formic acid, the precursor of formamide, from serpentinization. Physics of Life Reviews, 2020, 34-35, 94-95.	1.5	1
391	Prebiotic Route to Thymine from Formamide—A Combined Experimental–Theoretical Study. Molecules, 2021, 26, 2248.	1.7	1
392	Electric Field and Temperature Effects on the Ab Initio Spectroscopy of Liquid Methanol. Applied Sciences (Switzerland), 2021, 11, 5457.	1.3	1
393	RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems. Biophysical Journal, 2022, , .	0.2	1
394	Quantum Chemical Studies of Recurrent Interactions in RNA 3D Motifs. Nucleic Acids and Molecular Biology, 2012, , 239-279.	0.2	0
395	Computational Modeling of DNA and RNA Fragments. , 2012, , 1257-1275.		0
396	Frontispiece: Tetraloop-like Geometries Could Form the Basis of the Catalytic Activity of the Most Ancient Ribooligonucleotides. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0

# Article IF	CITATIONS
397 Insoluble organic matter - an "organic―cradle of life. Physics of Life Reviews, 2021, 38, 135-136. 1.5	0

0

Computational Modeling of DNA and RNA Fragments. , 2016, , 1-24.