JiÅÄ +I \&Å poner

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/745704/publications.pdf

Version: 2024-02-01

1	Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of $\hat{I}_{ \pm} \hat{\jmath}^{3}$ Conformers. Biophysical Journal, 2007, 92, 3817-3829.	0.2	2,036
2	Benchmark database of accurate (MP2 and $\operatorname{CCSD}(\mathrm{T})$ complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 2006, 8, 1985-1993.	1.3	1,635
3	Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs:â€\% Nonempirical Ab Initio Calculations. Chemical Reviews, 1999, 99, 3247-3276.	23.0	984
4	Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Clycosidic Torsion Profiles. Journal of Chemical Theory and Computation, 2011, 7, 2886-2902.	2.3	873
5	Density functional theory and molecular clusters. Journal of Computational Chemistry, 1995, 16, 1315-1325.	1.5	503
6	Accurate Interaction Energies of Hydrogen-Bonded Nucleic Acid Base Pairs. Journal of the American Chemical Society, 2004, 126, 10142-10151.	6.6	444
7	Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers, 2001, 61, 3-31.	1.2	408
8	RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews, 2018, 118, 4177-4338.	23.0	408
9	Nature of Nucleic Acidâ^Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs. The Journal of Physical Chemistry, 1996, 100, 5590-5596.	2.9	404

19	Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), andab initio Hartree-Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree-Fock results. , 1997, 18, 1136-1150.		251
20	Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study. The Journal of Physical Chemistry, 1994, 98, 3161-3164.	2.9	242
21	DNA Basepair Step Deformability Inferred from Molecular Dynamics Simulations. Biophysical Journal, 2003, 85, 2872-2883.	0.2	237
22	Reference Simulations of Noncanonical Nucleic Acids with Different Ï \ddagger Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. Journal of Chemical Theory and Computation, 2012, 8, 2506-2520.	2.3	231
23	Hydrogen Bonding and Stacking of DNA Bases: A Review of Quantum-chemical<i>ab initio</i>Studies. Journal of Biomolecular Structure and Dynamics, 1996, 14, 117-135.	2.0	222
24	Interaction of DNA Base Pairs with Various Metal Cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu,$+ \mathrm{Ag}+, \mathrm{Au}+, \mathrm{Zn} 2+$ Interaction. Journal of Physical Chemistry B, 1997, 101, 9670-9677.	$\begin{array}{r} 700 \\ 1.2 \end{array}$	$\begin{aligned} & \mathrm{T} / \mathrm{Ove} \\ & 222 \end{aligned}$
25	Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, $\mathrm{Na}+, \mathrm{K}+, \mathrm{Rb}+, \mathrm{Cs}+; \mathrm{Cu}+, \mathrm{Ag}+, \mathrm{Au}+; \mathrm{Mg} 2+, \mathrm{Ca} 2+, \mathrm{Sr} 2+, \mathrm{Ba} 2+; \mathrm{Zn} 2+, \mathrm{Cd} 2+$, and $\mathrm{Hg} 2+$). The Journal of Physical Chemistry, 1996, 100, 7250-7255.	2.9	214

Nature of Base Stacking: Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-PairSteps. Chemistry - A European Journal, 2006, 12, 2854-2865.
1.7

211
DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density
functional theory calculations. , 1996, 57, 959-970.

32 Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA
$6.6 \quad 162$ Molecules. Journal of the American Chemical Society, 1999, 121, 5519-5534.

High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proceedings of
the National Academy of Sciences of the United States of America, 2015, 112, 657-662.
3.3

159

Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Research, 2009,
37

Molecular Dynamics Simulations and Thermodynamics Analysis of DNAâ^ Drug Complexes. Minor
37 Groove Binding between 4ấ ϵ^{\sim},6-Diamidino-2-phenylindole and DNA Duplexes in Solution. Journal of the
6.6

150 American Chemical Society, 2003, 125, 1759-1769.

38 Sequence-dependent elastic properties of DNA 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 299, 695-709.
2.0

149
39 The Effect of Metal Binding to the N7 Site of Purine Nucleotides on Their Structure, Energy, and
1.2

Involvement in Base Pairing. Journal of Physical Chemistry B, 2000, 104, 7535-7544.
147

Metal-Stabilized Rare Tautomers and Mispairs of DNA Bases:â€\%。 N6-Metalated Adenine and N4-Metalated Cytosine, Theoretical and Experimental Views. Journal of Physical Chemistry A, 1999, 103, 11406-11413.
1.1

145

Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. Journal of
Physical Chemistry Letters, 2014, 5, 1771-1782.
2.1

Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. Journal of the American Chemical Society, 1994, 116, 709-714.
6.6

137

43 | Molecular dynamics simulations of RNA: Anin silico single molecule approach. Biopolymers, 2007, 85, |
| :--- |
| $169-184$. |

$44 \quad$| Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. Journal of Chemical Theory and |
| :--- |
| Computation, 2014, 10, 3177-3189. |

Formation Pathways of a Cuanine-Quadruplex DNA Revealed by Molecular Dynamics and
Thermodynamic Analysis of the Substates. Biophysical Journal, 2003, 85, 1787-1804.

46	Nonempirical ab Initio Study with Inclusion of Electron Correlation Effects. Journal of Physical 1.2 Chemistry B, 2000, 104, 6286-6292.

Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. Journal of
47
Chemical Theory and Computation, 2016, 12, 4534-4548.
Cations and Hydration in Catalytic RNA: Molecular Dynamics of the Hepatitis Delta Virus Ribozyme.
Biophysical Journal, 2006, 91, 626-638.

Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields.	2.3

$50 \quad$ Explaining the varied glycosidic conformational, G-tract length and sequence preferences for
anti-parallel G-quadruplexes. Nucleic Acids Research, 2011, 39, 4499-4512.
$6.5 \quad 119$

Molecular Dynamics Simulations of Guanine Quadruplex Loops: Advances and Force Field Limitations.
 Biophysical Journal, 2004, 87, 227-242.

$0.2 \quad 116$

Amino groups in nucleic acid bases, aniline, aminopyridines, and aminotriazine are nonplanar: Results
of correlatedabinitioquantum chemical calculations and anharmonic analysis of the aniline
1.2

115
inversion motion. Journal of Chemical Physics, 1996, 105, 11042-11050.
Base Stacking and Hydrogen Bonding in Protonated Cytosine Dimer: The Role of Molecular ion-dipole
and Induction Interactions. Journal of Biomolecular Structure and Dynamics, 1996, 13, 695-706.
2.0

114
$55 \quad \begin{aligned} & \text { Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by } \\ & \text { molecular simulations. Nucleic Acids Research, 2013, 41, 7128-7143. }\end{aligned}$

On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. Journal of Molecular Biology, 1998, 279, 1123-1136.
2.0

A prebiotically plausible synthesis of pyrimidine $\hat{\imath} 2$-ribonucleosides and their phosphate derivatives
$57 \quad \begin{aligned} & \text { A prebiotically plausible synthesis of pyrimidine } \hat{2} \text {-ribonucleosides and } \\ & \text { involving photoanomerization. Nature Chemistry, 2017, 9, 303-309. }\end{aligned}$
$6.6 \quad 109$

Uracil Dimer:â€\%o Potential Energy and Free Energy Surfaces. Ab Initio beyond Hartreeâ^’Fock and Empirical Potential Studies. Journal of Physical Chemistry A, 1998, 102, 6921-6926.
1.1

108
Non-Watson-Crick Basepairing and Hydration in RNA Motifs: Molecular Dynamics of 5S rRNA Loop E.
Biophysical Journal, 2003, 84, 3564-3582.

Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale
Quantum-Chemical Computations. Journal of the American Chemical Society, 2013, 135, 9785-9796.
6.6

108

61	Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers, 2013, 99, 978-988.	1.2	106
62	Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals. Journal of Physical Chemistry A, 2000, 104, 4592-4597.	1.1	103
63	Interaction of the Adenineâ^Thymine Watsonâ" Crick and Adenineâ^Adenine Reverse-Hoogsteen DNA Base Pairs with Hydrated Group lla (Mg2+, $\mathrm{Ca} 2+, \mathrm{Sr} 2+, \mathrm{Ba} 2+$) and llb (Zn2+, $\mathrm{Cd} 2+, \mathrm{Hg} 2+$) Metal Cations:A Absence of the Base Pair Stabilization by Metal-Induced Polarization Effects. Journal of Physical Chemistry B. 1999. 103. 2528-2534.	1.2	102

64 Nonplanar DNA Base Pairs. Journal of Biomolecular Structure and Dynamics, 1996, 13, 827-833.
2.0

101
Molecular dynamics simulations and their application to four-stranded DNA. Methods, 2007, 43,
$278-290$.
66 Duplexes. Can We Determine Correct Order of Stability by Quantum-Chemical Calculations?. Journal

1.2

97
of Physical Chemistry B, 2010, 114, 1191-1203.
67 Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding

2.3

97

Interactions. Journal of Chemical Theory and Computation, 2019, 15, 3288-3305.

Interactions of Hydrated Mg2+ Cation with Bases, Base Pairs, and Nucleotides. Electron Topology,
68 Natural Bond Orbital, Electrostatic, and Vibrational Study. Journal of Physical Chemistry B, 2001, 105,
1.2

95
6051-6060.

69 A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic
cancer. Scientific Reports, 2015, 5, 11385.
1.6

Structural Dynamics and Cation Interactions of DNA Quadruplex Molecules Containing Mixed
70 Guanine/Cytosine Quartets Revealed by Large-Scale MD Simulations. Journal of the American Chemical
6.6

93
Society, 2001, 123, 3295-3307.
71 Trapped water molecules are essential to structural dynamics and function of a ribozyme.
Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13380-13385.
3.3

92

Potential Energy Surface of the Cytosine Dimer:Â MP2 Complete Basis Set Limit Interaction Energies,

$$
\begin{aligned}
& 73 \text { Hinge-Like Motions in RNA Kink-Turns: The Role of the Second A-Minor Motif and Nominally Unpaired } \\
& \text { Bases. Biophysical Journal, 2005, 88, 3466-3485. }
\end{aligned}
$$

Outer-Shell and Inner-Shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+,) Tj ETQq0 00 rgBT /Overlock 10 Tf

$$
1.2
$$

of Physical Chemistry B, 2003, 107, 1913-1923.

$$
79
$$

$$
\begin{aligned}
& \text { Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER } \\
& \text { intermolecular terms with rigorous DFT-SAPT calculations. Physical Chemistry Chemical Physics, 2010, } \\
& 12,10476 \text {. }
\end{aligned}
$$

Complexes of Pentahydrated $\mathrm{Zn} 2+$ with Guanine, Adenine, and the Guanineâ^'Cytosine and88 Adenineâ^’Thymine Base Pairs. Structures and Energies Characterized by Polarizable MolecularMechanics and ab Initio Calculations. Journal of Physical Chemistry B, 1999, 103, 11415-11427.Global Minimum of the AdenineÂ•A.A.Thymine Base Pair Corresponds Neither to Watsonâ^Crick Nor to89 Hoogsteen Structures. Molecular Dynamic/Quenching/AMBER and ab Initio beyond Hartreeâ^Fock6.678Studies. Journal of the American Chemical Society, 2000, 122, 3495-3499.
Molecular Dynamics of Hemiprotonated Intercalated Four-Stranded i-DNA:Â Stable Trajectories on a
Nanosecond Scale. Journal of the American Chemical Society, 1998, 120, 6147-6151.
Significant structural deformation of nucleic acid bases in stacked base pairs: an ab initio stud

beyond Hartreeâ€"Fock. Chemical Physics Letters, 1998, 288, 7-14. | The DNA and RNA sugarâ€"phosphate backbone emerges as the key player. An overview of |
| :--- |
| 94 quantum-chemical, structural biology and simulation studies. Physical Chemistry Chemical Ph | 2012, 14, 15257.

95 Principles of RNA Base Pairing:Â Structures and Energies of the Trans Watsonâ^Crick/Sugar Edge Base
$1.2 \quad 75$
Pairs. Journal of Physical Chemistry B, 2005, 109, 11399-11410.

Metal ions in non-complementary DNA base pairs: an ab initio study of $\mathrm{Cu}(\mathrm{I}), \mathrm{Ag}(\mathrm{I})$, and $\mathrm{Au}(\mathrm{I})$ complexes with the cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 1999, 4, 537-545.
1.1

High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. Journal of Physical
Chemistry A, 2014, 118, 719-736.
1.1

73

Structure, dynamics, and elasticity of free $16 s$ rRNA helix 44 studied by molecular dynamics simulations. Biopolymers, 2006, 82, 504-520.
$1.2 \quad 72$

99 Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale

99 molecular dynamics simulations. Biochimie, 2014, 105, 22-35.
Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of
100 non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and
2.0 unfolding 1 1Edited by J. Doudna. Journal of Molecular Biology, 2001, 313, 1073-1091.
Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time101 scale. Nucleic Acids Research, 2013, 41, 2723-2735.
70Free Energy Landscape of GAGA and UUCG RNA Tetraloops. Journal of Physical Chemistry Letters, 2016,2.170
7, 4032-4038. 102
Unique Tertiary and Neighbor Interactions Determine Conservation Patterns of Cis Watsonâ €"Crick A/G Base-pairs. Journal of Molecular Biology, 2003, 330, 967-978. 69
1033.369Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM.Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2935-2944.$2.3 \quad 67$105 Computations Reveal Overstabilization of Stacking by Molecular Mechanics. Journal of ChemicalTheory and Computation, 2012, 8, 2448-2460.

> Structural Dynamics of Precursor and Product of the RNA Enzyme from the Hepatitis Delta Virus as Revealed by Molecular Dynamics Simulations. Journal of Molecular Biology, 2005, 351, 731-748.

Emergence of the First Catalytic Oligonucleotides in a Formamideâ€Based Origin Scenario. Chemistry - A European Journal, 2016, 22, 3572-3586.

Cation binding to $15-$ TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Research, 2011, 39, 9789-9802.

Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. Journal of Physical Chemistry B, 2012, 116, 9899-9916.
1.2

Reverse Watsonâ^'Crick Isocytosineâ^'Cytosine and Guanineâ^' Cytosine Base Pairs Stabilized by the
113 Formation of the Minor Tautomers of Bases. An ab Initio Study in the Gas Phase and in a Water Cluster.
1.1 Journal of Physical Chemistry A, 1998, 102, 10374-10379.

Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular
114 Dynamics and Well-Tempered Metadynamics. Journal of Chemical Theory and Computation, 2015, 11, 3866-3877.

115 Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Research, 2014, 42, 7383-7394.
$6.5 \quad 59$

Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs. Journal of Chemical Physics, 1997, 106, 1472-1479.

Insight into G-DNA Structural Polymorphism and Folding from Sequence and Loop Connectivity
through Free Energy Analysis. Journal of the American Chemical Society, 2011, 133, 14270-14279.
On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction
118 between Cyano Radicals and Formamide in a High-Energy Impact Event. Journal of the American Chemical Society, 2012, 134, 20788-20796.

119 Quantum Chemical Studies of Nucleic Acids: Can We Construct a Bridge to the RNA Structural
Biology and Bioinformatics Communities?. Journal of Physical Chemistry B, 2010, 114, 15723-15741.

Sugar Edge/Sugar Edge Base Pairs in RNA:Â Stabilities and Structures from Quantum Chemical
120 Calculations. Journal of Physical Chemistry B, 2005, 109, 18680-18689.
1.2

56

Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic
$2.3 \quad 56$
Mechanism of Hairpin Ribozyme. Journal of Chemical Theory and Computation, 2014, 10, 1608-1622.

Theoretical Study on the Structure, Stability, and Electronic Properties of the Guanineâ^Znâ^^Cytosine Base Pair in M-DNA. Journal of Physical Chemistry B, 2007, 111, 870-879.

Trans Hoogsteen/Sugar Edge Base Pairing in RNA. Structures, Energies, and Stabilities from Quantum
Chemical Calculations. Journal of Physical Chemistry B, 2009, 113, 1743-1755.
1.2

Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy
124 Decomposition, and Many-Body Stacking Effects. Journal of Chemical Theory and Computation, 2019, 15,
95-115.
Molecular Dynamics of DNA Quadruplex Molecules Containing Inosine, 6-Thioguanine and
6-Thiopurine. Biophysical Journal, 2001, 80, 455-468.
0.2

54

RNA Kink-Turns as Molecular Elbows: Hydration, Cation Binding, and Large-Scale Dynamics. Structure,
2006, 14, 825-835.
127
Conformations of Flanking Bases in HIV-1 RNA DIS Kissing Complexes Studied by Molecular Dynamics.
Biophysical Journal, 2007, 93, 3932-3949.
0.2

54

Protonation States of the Key Active Site Residues and Structural Dynamics of the <i>glmS</i> Riboswitch As Revealed by Molecular Dynamics. Journal of Physical Chemistry B, 2010, 114, 8701-8712.
1.2

54
129

Chemical Shifts in Nucleic Acids Studied by Density Functional Theory Calculations and Comparison with Experiment. Chemistry - A European Journal, 2012, 18, 12372-12387.
1.7

How to understand atomistic molecular dynamics simulations of <scp>RNA</scp> and proteinâ $€^{\prime \prime}$ <scp>RNA</scp> complexes?. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1405.
3.2

How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes. ACS
Catalysis, 2018, 8, 11352-11361.
$5.5 \quad 54$
131

Fitting Corrections to an RNA Force Field Using Experimental Data. Journal of Chemical Theory and
132 Computation, 2019, 15, 3425-3431.
$2.3 \quad 54$
\square
133 A Systematic ab Initio Study of the Hydration of Selected Palladium Square-Planar Complexes. A
Comparison with Platinum Analogues. Journal of Physical Chemistry A, 2001, 105, 8086-8092.
Comparison with Platinum Analogues. Journal of Physical Chemistry A, 2001, 105, 8086-8092.
$1.1 \quad 53$

Theoretical Study of the Guanine ât' 6-Thioguanine Substitution in Duplexes, Triplexes, and Tetraplexes.
Journal of the American Chemical Society, 2004, 126, 14642-14650.
$6.6 \quad 52$
135 Geometrical and Electronic Structure Variability of the Sugarâ^phosphate Backbone in Nucleic Acids.
Journal of Physical Chemistry B, 2008, 112, 8188-8197.
Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit
136 Calculations on Uracil Dimer and a Comparison with the Force-Field Description. Journal of Chemical Theory and Computation, 2009, 5, 1524-1544.

137 Structure of a Stable G-Hairpin. Journal of the American Chemical Society, 2017, 139, 3591-3594.
$6.6 \quad 51$

138 Protonation of Platinated Adenine Nucleobases. Gas Phase vs Condensed Phase Picture. Inorganic Chemistry, 2001, 40, 3269-3278.
1.9

50
139 The Influence of the Thymine C5 Methyl Group on Spontaneous Base Pair Breathing in DNA. Journal of Biological Chemistry, 2002, 277, 28491-28497.
1.6

Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights
140 into Folding and Unfolding of Human Telomeric G-Quadruplexes. Journal of Chemical Theory and
2.3

50
Computation, 2016, 12, 6077-6097.
141 Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. Journal
of Chemical Theory and Computation, 2017, 13, 3911-3926.
2.3

50

Synthesis of (<scp>d</scp>)-erythrose from glycolaldehyde aqueous solutions under electric field.
Chemical Communications, 2018, 54, 3211-3214.The Influence of N7Guanine Modifications on the Strength of Watsonâ^Crick Base Pairing and Guanine143 N1Acidity: \hat{A} Comparison of Gas-Phase and Condensed-Phase Trends. Journal of Physical Chemistry B,1.2

Extended molecular dynamics of a<i>c-kit</i> promoter quadruplex. Nucleic Acids Research, 2015, 43,
Stabilization of the Purineâ€థPurineâ€\$Pyrimidine DNA Base Triplets by Divalent Metal Cations. Journal of
Biomolecular Structure and Dynamics, 1998, 16, 139-143.

148 The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study.
1.3

Physical Chemistry Chemical Physics, 2001, 3, 4404-4411.
149 Two lâ€f:â€f 1 binding modes for distamycin in the minor groove of d(CGCCAATTGG). FEBS Journal, 2002, 269, 0.2

150 Ribosomal RNA Kink-turn Motifâ€"A Flexible Molecular Hinge. Journal of Biomolecular Structure and Dynamics, 2004, 22, 183-193.
$2.0 \quad 48$

151 | Long-Residency Hydration, Cation Binding, and Dynamics of Loop E/Helix IV rRNA-L25 Protein Complex. |
| :--- |
| Biophysical Journal, 2004, 87, 3397-3412. |

152 Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Nucleic Acids Research, 2010, 38, 1325-1340.

Prebiotic synthesis of nucleic acids and their building blocks at the atomic level â€" merging models
and mechanisms from advanced computations and experiments. Physical Chemistry Chemical Physic
$6.5 \quad 48$

2016, 18, 20047-20066.
Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the
154 RRMs, the most common RNA recognition motifs. Nucleic Acids Research, 2016, 44, 6452-6470.
6.5

48

> 155 Nanosecond Molecular Dynamics of Zipper-like DNA Duplex Structures Containing Sheared GÂ•A
> Mismatch Pairs. Journal of the American Chemical Society, 2000, 122, 7564-7572.
$6.6 \quad 47$

156 Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and
T-REMD simulations. Nucleic Acids Research, 2015, 43, gkv994.
6.5

47

General Base Catalysis for Cleavage by the Active-Site Cytosine of the Hepatitis Delta Virus Ribozyme:
157 QM/MM Calculations Establish Chemical Feasibility. Journal of Physical Chemistry B, 2008, 112,
$1.2 \quad 46$
11177-11187.
An RNA Molecular Switch: Intrinsic Flexibility of 23 S rRNA Helices 40 and 685 â $€^{2}-U A A / 5 a ̂ \not €^{2}-G A N$ Internal
158 Loops Studied by Molecular Dynamics Methods. Journal of Chemical Theory and Computation, 2010, 6,
2.3

46 910-929.

Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied
159 by Large-Scale Explicit Solvent Simulations. Journal of Chemical Theory and Computation, 2010, 6 ,
159 by Large-Scale Explicit Solvent Simulations. Journal of Chemical Theory and Computation, 2010, 6,
2.3

46
3003-3014.

160 Thermodynamic characteristics for the formation of H -bonded DNA base pairs. Chemical Physics
1.2

45
Letters, 1996, 261, 379-384.

How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists. Methods, 2013, 64, 3-11.
Interactions of Hydrated Ila and IIb Group Metal Cations with Thioguanine-Cytosine DNA Base Pair: Ab
initio and Density Functional Theory Investigation of Polarization Effects, Differences Among
Cations, and Flexibility of the Cation Hydration Shell. Journal of Biomolecular Structure and
$2.0 \quad 44$

164 Formamide-Based Prebiotic Synthesis of Nucleobases: A Kinetically Accessible Reaction Route. Journal 164 of Physical Chemistry A, 2012, 116, 720-726.
1.1
<i>Ab initio</i> spectroscopy of water under electric fields. Physical Chemistry Chemical Physics,
2019, 21, 21205-21212.

166 Molecular Mechanism of preQ<sub> $1</$ sub $>$ Riboswitch Action: A Molecular Dynamics Study. Journal
1.2 of Physical Chemistry B, 2012, 116, 12721-12734.
Are the Hydrogen Bonds of RNA (Aâ<...U) Stronger Than those of DNA (Aâ<...T)? A Quantum Mechanics Study.
Chemistry - A European Journal, 2005, 11, 5062-5066.

Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Research, 2012, 40, 6290-6303.
6.5

42
171 DNA Deformability at the Base Pair Level. Journal of the American Chemical Society, 2004, 126, 4124-4125.

Theoretical Calculation of the NMR Spinâ^Spin Coupling Constants and the NMR Shifts Allow
 172 Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal
 Cation to Guanine. Journal of the American Chemical Society, 2004, 126, 663-672.

6.6

41

173	Copper Cation Interactions with Biologically Essential Types of Ligands:Â A Computational DFT Study. Journal of Physical Chemistry A, 2006, 110, 4795-4809.	1.1	40
174	Leading RNA Tertiary Interactions:â $€ \%$ Structures, Energies, and Water Insertion of A-Minor and P-Interactions. A Quantum Chemical View. Journal of Physical Chemistry B, 2007, 111, 9153-9164.	1.2	40
175	Molecular dynamics suggest multifunctionality of an adenine imino group in acid-base catalysis of the hairpin ribozyme. Rna, 2009, 15, 560-575.	1.6	40

176 Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts. Physical Chemistry
Chemical Physics, 2017, 19, 20420-20429.
1.3

40
177

Sequence dependent intrinsic deformability of the DNA base amino groups. An ab initio quantum
chemical analysis. Computational and Theoretical Chemistry, 1994, 304, 35-40.
1.5

39

Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA
178 with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs. Journal of
2.3

39 Chemical Theory and Computation, 2009, 5, 2088-2100.

Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic
Simulations. Journal of Chemical Theory and Computation, 2017, 13, 2458-2480.
2.3

39
181
182

Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex:
181 A study using a transition-FRET (t-FRET) assay. Biochimica Et Biophysica Acta - General Subjects, 2017,
1.1

38
1861, 2020-2030.
G.C. Base Pair in Parallel-Stranded DNAâ€"A Novel Type of Base Pairing: An ab initio Quantum Chemical Study. Journal of Biomolecular Structure and Dynamics, 1994, 12, 671-680.
2.0

37
183

Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA
6.5 structural elements in the ribosome. Nucleic Acids Research, 2010, 38, 6247-6264.

Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nature Communications, 2021, 12, 428.
5.8

Different intrastrand and interstrand contributions to stacking account for roll variations at the
185 alternating purine-pyrimidine sequences in A-DNA and A-RNA. Journal of Molecular Biology, 1991, 221,
$2.0 \quad 36$ 761-764.

Interactions of hydrated divalent metal cations with nucleic acid bases. How to relate the gas phase
186 data to solution situation and binding selectivity in nucleic acids. Physical Chemistry Chemical
1.3 Physics, 2004, 6, 2772-2780.

187 Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick
base-pairing arabino-furanosyl nucleosides in water. Nature Communications, 2018, 9, 4073.
5.8

36

Spectroscopic and Theoretical Insights into Sequence Effects of Aminofluorene-Induced
Conformational Heterogeneity and Nucleotide Excision Repair,. Biochemistry, 2007, 46, 11263-11278.

Proton irradiation: a key to the challenge of N -glycosidic bond formation in a prebiotic context.
189 Sroton irradiation: a key $\begin{aligned} & \text { Scientific Reports, } 2017,7,14709 .\end{aligned}$
1.6

35

190 Nonempirical ab initio calculations on DNA base pairs. Chemical Physics, 1996, 204, 365-372.
0.9

> Theoretical Study on the Factors Controlling the Stability of the Borate Complexes of Ribose,
> Arabinose, Lyxose, and Xylose. Chemistry - A European Journal, 2008, 14, 9990-9998.
1.7

34

192 with water and nucleobases; ab initio and DFT study. Journal of Computational Chemistry, 2009, 30,
1.5

34
1758-1770.

193 Ultrafast excited-state dynamics of isocytosine. Physical Chemistry Chemical Physics, 2016, 18,
1.3

34

QM/MM Calculations on Proteinâ€"RNA Complexes: Understanding Limitations of Classical MD
194 Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and
2.3

34
Computation, 2018, 14, 5419-5433.
Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling
195 Techniques and Effects of Force Field Modifications. Journal of Chemical Theory and Computation,
2.3

34
2022, 18, 2642-2656.
Close mutual contacts of the amino groups in DNA. International Journal of Biological
Macromolecules, 1994, 16, 3-6.Chemical Physics, 2017, 147, 152715.Molecular Simulations. Journal of Physical Chemistry B, 2010, 114, 10581-10593.
208 Electron-Driven Proton Transfer Along $\mathrm{H}<$ sub $>2</$ sub>O Wires Enables Photorelaxation of Ïeïf* Statesin Chromophoreâ€"Water Clusters. Journal of Physical Chemistry Letters, 2015, 6, 1467-1471.
217 Photochemistry of 2-Aminooxazole, a Hypothetical Prebiotic Precursor of RNA Nucleotides. Journal
2.1calculations. Physical Chemistry Chemical Physics, 2015, 17, 670-679.MD Simulations. Journal of Chemical Theory and Computation, 2018, 14, 5011-5026.
227 Impact of an extruded nucleotide on cleavage activity and dynamic catalytic core conformation of the227 hepatitis delta virus ribozyme. Biopolymers, 2007, 85, 392-406.
1.2 27
228 Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2â€2-OH Group of2.327
Ribose. Journal of Chemical Theory and Computation, 2009, 5, 1166-1179.$6.5 \quad 28$
229 Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is6.527modulated by orientation of glycosidic torsion. Nucleic Acids Research, 2009, 37, 7321-7331.A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for230 Conformation-Dependent Solvation Effects. Journal of Chemical Theory and Computation, 2012, 8,2.327
3232-3242.231 Noncanonical $\hat{\imath} \pm \mid \hat{\mid} 3$ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER1.2Force Field. Journal of Physical Chemistry B, 2017, 121, 2420-2433.
Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chemical3.727

235	Noncanonical Hydrogen Bonding in Nucleic Acids. Benchmark Evaluation of Key Baseấ "Phosphate Interactions in Folded RNA Molecules Using Quantum-Chemical Calculations and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2011, 115, 11277-11292.	1.1	26
236	An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Research, 2018, 46, 6528-6543.	6.5	26
237	A-Minor Tertiary Interactions in RNA Kink-Turns. Molecular Dynamics and Quantum Chemical Analysis. Journal of Physical Chemistry B, 2011, 115, 13897-13910.	1.2	25
238	Understanding the Sequence Preference of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. Journal of Chemical Theory and Computation, 2012, 8, 335-347.	2.3	25
239	Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Physical Chemistry Chemical Physics, 2015, 17, 1399-1410.	1.3	25
240	Comment on â€œElectron-Correlated Calculations of Electric Properties of Nucleic Acid Basesâ€: Journal of Physical Chemistry B, 1997, 101, 8038-8039.	1.2	24
241	Sugar Pucker Modulates the Cross-Correlated Relaxation Rates across the Clycosidic Bond in DNA. Journal of the American Chemical Society, 2005, 127, 14663-14667.	6.6	24
242	Calculation of Structural Behavior of Indirect NMR Spinâ^'Spin Couplings in the Backbone of Nucleic Acids. Journal of Physical Chemistry B, 2006, 110, 22894-22902.	1.2	24
243	Understanding the role of base stacking in nucleic acids. MD and QM analysis of tandem GA base pairs in RNA duplexes. Physical Chemistry Chemical Physics, 2012, 14, 12580.	1.3	24

244 Mechanical Model of DNA Allostery. Journal of Physical Chemistry Letters, 2014, 5, 3831-3835. 2.1

245	Energies and $2 \hat{a ̂} €^{2}$-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations. Journal of Chemical Theory and Computation, 2014, 10, 463-480.	2.3	24
246	Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch. Nature Communications, 2019, 10, 4304.	5.8	24
247	One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology, 2020, 20, 1476-1488.	1.5	24

$248 \quad$ 2,6-diaminopurine promotes repair5.824
249 The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nature5.824

RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient
resolution. Nature Communications, 2019, 10, 4102.

Derivation of Reliable Ceometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and
254 Restrained Implicit Solvent QM Optimizations of G-Quadruplexes. Journal of Chemical Theory and
2.3
5.8

23

Computation, 2016, 12, 2000-2016.

255 Novel electrochemical route to cleaner fuel dimethyl ether. Scientific Reports, 2017, 7, 6901.
1.6

Mobilities of iodide anions in aqueous solutions for applications in natural dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2018, 20, 13038-13046.
257 A- to B-DNA Transition in AMBER Force Fields and Its Coupling to Sugar Pucker. Journal of Chemical Theory and Computation, 2018, 14, 319-328.

Structural and dynamic effects of single 7-hydro-8-oxoguanine bases located in a frameshift target
DNA sequence. Biophysical Chemistry, 2005, 118, 31-41.

Indirect NMR Spinâ^’Spin Coupling Constants 3J(P,C) and 2J(P,H) across the Pâ^'OAA. $\hat{A} \cdot \hat{A} \cdot H \hat{a}^{\wedge \prime} C$ Link Can Be Used
259 for Structure Determination of Nucleic Acids. Journal of the American Chemical Society, 2006, 128,
$6.6 \quad 21$
6823-6828.

260 Waterâe"chromophore electron transfer determines the photochemistry of cytosine and cytidine.

Physical Chemistry Chemical Physics, 2017, 19, 17531-17537.
261 Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. Journal of Biological
Chemistry, 2018, 293, 191-202.

Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 9202-9208.
Short but Weak: The Zâ€DNA Loneâ€Pairấ...ấ...â<...ï€ Conundrum Challenges Standard Carbon Van der Waals Radii. 2 263 Angewandte Chemie - International Edition, 2020, 59, 16553-16560.21
264 Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. Journal of Chemical Theory2.321
and Computation, 2022, 18, 4490-4502.Tautomerism of xanthine: The second-order M $\tilde{A}^{\sim} l l e r-P l e s s e t ~ s t u d y . ~ S t r u c t u r a l ~ C h e m i s t r y, ~ 1995, ~ 6, ~$281-286.1.020
How Nucleobases Rotate When Bonded to a Metal Ion:Â Detailed View from an Ab Initio Quantum
266 Chemical Study of a Cytosine Complex oftrans-a2Ptll. Journal of Physical Chemistry B, 2001, 105, 1.2 20
12171-12179.
267 Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of 1.2 20
the AMBER RNA Force Fields. Journal of Physical Chemistry B, 2015, 119, 15176-15190.268 Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. BiochimicaEt Biophysica Acta - General Subjects, 2015, 1850, 1072-1090.
271 Loss of Hoogsteen Pairing Ability upon N1 Adenine Platinum Binding. Inorganic Chemistry, 2002, 41, 1.9 19
2855-2863.Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel272 Quantum Chemistry and Polarizable Molecular Mechanics.. Journal of Physical Chemistry B, 2015, 119,1.219
9477-9495.
273 Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide 1.2 Label. Biochemistry, 2016, 55, 360-372.
Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner:
274 Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochimica Et 1.1 Biophysica Acta - General Subjects, 2020, 1864, 129651.
275 Insights into G-Quadruplexâ€"Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity 2.3
and Folding. Journal of Chemical Theory and Computation, 2021, 17, 1883-1899.
276 Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Topicsin Catalysis, 2022, 65, 40-58.$1.3 \quad 19$
277 Non-Enzymatic Oligomerization of 3 â€™, 5â€ ${ }^{T M}$ Cyclic AMP. PLoS ONE, 2016, 11, e0165723. 1.1 19Stability of $2 \hat{a} €^{2}, 3 \hat{a} €^{2}$ and $3 a €^{2}, 5 a ̂ €^{2}$ cyclic nucleotides in formamide and in water: a theoretical insight into the
278factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Physical1.318Chemistry Chemical Physics, 2017, 19, 1817-1825.Photodynamics of alternative DNA base isoguanine. Physical Chemistry Chemical Physics, 2019, 21,
279 13474-13485.$1.3 \quad 18$
280 Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the CentrosymmetricIndigo Molecule. Journal of Physical Chemistry A, 2020, 124, 10856-10869.
281 W-RESP: Well-Restrained Electrostatic Potential-Derived Charges. Revisiting the Charge Derivation Model. Journal of Chemical Theory and Computation, 2021, 17, 3495-3509.
1.118Interactions of DNA Bases and the Structure of DNA: A Nonempirical <i>Ab Initio</i> Study with282 Inclusion of Electron Correlation. Computational Chemistry - Reviews of Current Trends, 1996, ,185-218.
Conformational Energies of DNA Sugarâ^'Phosphate Backbone: Reference QM Calculations and a and Computation, 2010, 6, 3817-3835.
NMR Cross-Correlated Relaxation Rates Reveal Ion Coordination Sites in DNA. Journal of the American 6.6 17
284 Chemical Society, 2011, 133, 13790-13793.1.217Bioinformatics and Molecular Dynamics Simulation Study of Ll Stalk Non-Canonical rRNA E
Kink-Turns, Loops, and Tetraloops. Journal of Physical Chemistry B, 2013, 117, 5540-5555.Excited-state hydrogen atom abstraction initiates the photochemistry of $\hat{2}$-2â€²-deoxycytidine. Chemical3.717
Science, 2015, 6, 2035-2043.
MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA,
$287\langle s c p\rangle|<| s c p>-H i s t i d i n e$ Ligand, and Mg²⁺. Journal of Chemical Theory and Computation,2.317
2017, 13, 5658-5670.Dust Motions in Magnetized Turbulence: Source of Chemical Complexity. Astrophysical JournalLetters, 2018, 866, L23.

289	Stereocontrolled Synthesis of ($\left.\hat{a}^{\wedge}\right)^{-}$-Bactobolin A. Journal of the American Chemical Society, 2020, 142, 7306-7311.	6.6	17
290	An RNA molecular switch: Intrinsic flexibility of 23 S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. Journal of Chemical Theory and Computation, 2010, 2010, 910-929.	2.3	17
291	Ribozyme Activity of RNA Nonenzymatically Polymerized from 3â€²,5â€²-Cyclic GMP. Entropy, 2013, 15, 5362-5383.	1.1	16
292	Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. Journal of Physical Chemistry B, 2016, 120, 10635-10648.	1.2	16
293	Nonenzymatic Oligomerization of 3 â $€^{2}, 5 \hat{\epsilon^{\prime}} €^{2}$ â $€$ Cyclic CMP Induced by Proton and UV Irradiation Hints at a Nonfastidious Origin of RNA. ChemBioChem, 2017, 18, 1535-1543.	1.3	16
294	Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. Journal of Chemical Theory and Computation, 2020, 16, 2857-2863.	2.3	16
295	Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. Journal of Chemical Theory and Computation, 2020, 16, 3447-3463.	2.3	16
296	Theoretical Model of the n-Propylbenzene Formation in the Benzene Isopropylation over Zeolites. An Anti-Markovnikov-Type Proton Addition Promoted by the Steric Effect of MFI and MEL Zeolite Channels. Journal of Physical Chemistry B, 1998, 102, 7169-7175.	1.2	15
297	Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. Rna, 2014, 20, 1112-1128.	1.6	15

307 New evolutionary insights into the nonâ€enzymatic origin of <scp>RNA</scp> oligomers. Wiley 3.2
Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity:
308 A molecular dynamics and enhanced sampling simulations study. PLoS Computational Biology, 2018, 14, el006642.

309 \begin{tabular}{ll}
Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands. Chemical Research in

Toxicology, 2020, 33, 967-974.

\quad

Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Baseấpair Analogues.

Chemistry - A European Journal, 2010, 16, 3057-3065.
\end{tabular}$\quad 1.7$

314 Solvation effects alter the photochemistry of 2-thiocytosine. Chemical Physics, 2018, 515, 502-508.3605-3608.

Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Chemical Communications, 2019, 55, 10563-10566.
2.2

317 Pairs:â€\%o The cis- and trans-Watsonâ^ ${ }^{\text {C }}$ Crick/Sugar Edge Base Pair Family. Journal of Physical Chemistry B,
1.2

12 2007, 111, 10813-10824.

318 Conformational transitions of flanking purines in HIVâ€d RNA dimerization initiation site kissing
1.2

12 complexes studied by CHARMM explicit solvent molecular dynamics. Biopolymers, 2008, 89, 732-746.

Photorelaxation of imidazole and adenine via electron-driven proton transfer along $\mathrm{H}<$ sub $>2</$ sub $>\mathrm{O}$
1.6

12 wires. Faraday Discussions, 2016, 195, 237-251.

Enhanced conductivity of water at the electrified airâ€"water interface: a DFT-MD characterization. Physical Chemistry Chemical Physics, 2020, 22, 10438-10446.

Solution Structure of the Dodecamer d-(CATGGGCC-CATG) < sub $>2</ s u b>$ is B-DNA. Experimental and Molecular Dynamics Study. Journal of Biomolecular Structure and Dynamics, 2001, 19, 159-174.
2.0

11

Comment on â€œComputational Model for Predicting Experimental RNA and DNA Nearest-Neighbor Free
1.2

11
Energy Rankingsâ€: Journal of Physical Chemistry B, 2012, 116, 8331-8332.
rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. Journal of Chemical Theory and
Computation, 2017, 13, 3359-3371.
2.3 11

Photostability of oxazoline RNA-precursors in UV-rich prebiotic environments. Chemical
Communications, 2018, 54, 13407-13410.

329	Meteoriteâ€Assisted Phosphorylation of Adenosine Under Proton Irradiation Conditions. ChemSystemsChem, 2020, 2, e1900039.
330	Arsenicâ€"nucleotides interactions: an experimental and computational investigation. Dalton Transactions, 2020, 49, 6302-6311.
331	Base Stacking and Base Pairing. , 2006, , 343-388.
332	Structure, Energetics, Vibrational Frequencies and Charge Transfer of Base Pairs, Nucleoside Pairs, Nucleotide Pairs and B-DNA Pairs of Trinucleotides:<i>ab initio</i>HF/MINI-1 and Empirical Force Fiel Study. Journal of Biomolecular Structure and Dynamics, 2000, 17, 1077-1086.
333	Mechanism of Action of Anticancer Titanocene Derivatives:â€\%» An Insight from Quantum Chemical Calculations. Journal of Physical Chemistry B, 2006, 110, 19632-19636.
334	Theoretical modeling on the kinetics of the arsenate-ester hydrolysis: implications to the stability of As-DNA. Physical Chemistry Chemical Physics, 2011, 13, 10869.
335	On the Geometry and Electronic Structure of the As-DNA Backbone. Journal of Physical Chemistry Letters, 2011, 2, 389-392.

Room temperature spontaneous conversion of OCS to CO 2 on the anatase TiO 2 surface. Chemical Communications, 2014, 50, 7712-7715.
$2.2 \quad 9$
336

Role of S-turn2 in the Structure, Dynamics, and Function of Mitochondrial Ribosomal A-Site. A
337 Bioinformatics and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2014, 118,
1.2 6687-6701.

338 Tetraloopâ€like Geometries Could Form the Basis of the Catalytic Activity of the Most Ancient Ribooligonucleotides. Chemistry - A European Journal, 2015, 21, 3596-3604.
1.7

9

> Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site.
> Biochimie, 2015, 112, 96-110.
1.3

Chemical feasibility of the general acid/base mechanism of <i>glmS</i> ribozyme selfâ€eleavage.
340 Biopolymers, 2015, 103, 550-562.
1.2

9

341 Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry. ChemBioChem,
2018, 19, 22-25.
1.3

9

Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction

Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure
of Proteinấ ${ }^{\text {"RNA Complexes. Methods in Enzymology, 2019, 614, 393-422. }}$

Surprisingly broad applicability of the cc-pV<i>n<|i>Z-F12 basis set for ground and excited states. Journal of Chemical Physics, 2020, 152, 214104.

Four Ways to Oligonucleotides Without Phosphoimidazolides. Journal of Molecular Evolution, 2016, 82, 5-10.

Highly accurate equilibrium structure of the C2h symmetric N1â€toâ€O2 hydrogenâ€bonded uracilâ€dimer. 346 International Journal of Quantum Chemistry, 2018, 118, e25624.
$1.0 \quad 8$

Aromatic DNA Base Stacking and H-Bonding. Computational Chemistry - Reviews of Current Trends, 2000, , 171-210.

Effect of local sugar and base geometry on 13C and 15 N magnetic shielding anisotropy in DNA nucleosides. Journal of Biomolecular NMR, 2008, 42, 209-223.

Insight into formation propensity of pseudocircular DNA G-hairpins. Nucleic Acids Research, 2021, 49,
2317-2332.

Nonenzymatic, Templateâ $€$ Free Polymerization of $3 \hat{a} €^{\mathrm{TM}}, 5 \hat{} €^{\mathrm{TM}}$ Cyclic Guanosine Monophosphate on Mineral Surfaces. ChemSystemsChem, 2021, 3, .

Understanding the behaviour of carnosine in aqueous solution: an experimental and quantum-based
351 computational investigation on acidấ $\epsilon^{\text {"b base }}$ properties and complexation mechanisms with
Ca<sup> $2+\langle/$ sup $>$ and $M g\langle\sup >2+\langle/$ sup $>$. New Journal of Chemistry, 2021, 45, 20352-20364.

How does hydroxyl introduction influence the double helical structure: the stabilization of an
352 altritol nucleic acid:ribonucleic acid duplex. Nucleic Acids Research, 2012, 40, 7573-7583.
6.5

6

353 Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Physical
Chemistry Chemical Physics, 2015, 17, 5887-5900.

354 UV-induced hydrogen transfer in DNA base pairs promoted by dark nï ϵ^{*} states. Chemical Communications, 2020, 56, 201-204.
2.2
1.3

6

Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to
folding and ligand binding. Annual Reports in Medicinal Chemistry, 2020, , 197-241.
Highâ€Energy Protonâ€Beamâ€łnduced Polymerization/Oxygenation of Hydroxynaphthalenes on Meteorites
356 and Nitrogen Transfer from Urea: Modeling Insoluble Organic Matter?. Chemistry - A European
1.7

Journal, 2020, 26, 14919-14928.
Atomistic simulations of the free-energy landscapes of interstellar chemical reactions: the case of methyl isocyanate. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1565-1570.
1.6

Interaction of Metal Cations with Nucleic Acids and their Building Units. , 2006, , 389-410.
6

Exploring Sequence Space to Design Controllable G-Quadruplex Topology Switches. CCS Chemistry,
2022, 4, 3036-3050.

361	MP2 and $\operatorname{CCSD}(\mathrm{T})$ calculations on $\mathrm{Hî}$ - bonded and stacked formamideâ $€$ formamide and formamidineâ€ \| formamidine dimers. Computational and Theoretical Chemistry, 1996, 388, 115-120.	1.5	5
362	Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides. Journal of Physical Chemistry Letters, 2021, 12, 6707-6713.	2.1	5
363	Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose $\hat{A} \cdot \hat{A} \cdot \hat{A} \cdot$ Nucleobase Lone-PairA. $\hat{A} \cdot \hat{A} \cdot \hat{A} \in$ Contacts in Nucleic Acids. Journal of Chemical Information and Modeling, 2021, 61, 5644-5657.	2.5	5
364	Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. Journal of Physical Chemistry B, 2017, 121, 10828-10840.	1.2	4
365	Structural and Energetic Compatibility: The Driving Principles of Molecular Evolution. Astrobiology, 2019, 19, 1117-1122.	1.5	4
366	Sustainability and Chaos in the Abiotic Polymerization of $3 \hat{a} €^{2}, 5 a ̂ \epsilon^{2}$ Cyclic Guanosine Monophosphate: The Role of Aggregation. ChemSystemsChem, 2021, 3, e2000011.	1.1	4
367	Questions and Answers Related to the Prebiotic Production of Oligonucleotide Sequences from 3â€²,5â€² Cyclic Nucleotide Precursors. Life, 2021, 11, 800.	1.1	4

386 Computational Modeling of DNA and RNA Fragments. , 2017, , 1803-1826.
387 Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach. , 2017, , 1827-1874.

Short but Weak: The Zâ€ĐNA Loneâ€Pairâ<...â<...â<..Ï€ Conundrum Challenges Standard Carbon Van der Waals Radii Angewandte Chemie, 2020, 132, 16696-16703.
389 Ariel â€" a window to the origin of life on early earth?. Experimental Astronomy, 2020, , 1. 1.6 1
390 Formic acid, the precursor of formamide, from serpentinization. Physics of Life Reviews, 2020, 34-35,94-95.
$1.5 \quad 1$
391 Prebiotic Route to Thymine from Formamideâ $€$ "A Combined Experimentalâ $€$ "Theoretical Study. Molecules, 2021, 26, 2248.
$1.7 \quad 1$Electric Field and Temperature Effects on the Ab Initio Spectroscopy of Liquid Methanol. Applied1.3

Quantum Chemical Studies of Recurrent Interactions in RNA 3D Motifs. Nucleic Acids and Molecular Biology, 2012, , 239-279.

