
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456693/publications.pdf Version: 2024-02-01

ΔΟΠΟΤΑΝ Ο ΖΑΦΑΤΑ

#	Article	IF	CITATIONS
1	Oral Trypanosoma cruzi Acute Infection in Mice Targets Primary Lymphoid Organs and Triggers Extramedullary Hematopoiesis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 800395.	3.9	2
2	Lympho-Hematopoietic Microenvironments and Fish Immune System. Biology, 2022, 11, 747.	2.8	6
3	ICAPâ€1 loss impairs CD8 ⁺ thymocyte development and leads to reduced marginal zone B cells in mice. European Journal of Immunology, 2022, , .	2.9	0
4	How Many Thymic Epithelial Cells Are Necessary for a Proper Maturation of Thymocytes?. Frontiers in Immunology, 2021, 12, 618216.	4.8	2
5	The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Frontiers in Cell and Developmental Biology, 2021, 9, 650664.	3.7	75
6	Delayed maturation of thymic epithelium in mice with specific deletion of β-catenin gene in FoxN1 positive cells. Histochemistry and Cell Biology, 2021, 156, 315-332.	1.7	0
7	Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells, 2020, 9, 2226.	4.1	4
8	Exofucosylation of Adipose Mesenchymal Stromal Cells Alters Their Secretome Profile. Frontiers in Cell and Developmental Biology, 2020, 8, 584074.	3.7	12
9	Thymus aging in mice deficient in either EphB2 or EphB3 , two master regulators of thymic epithelium development. Developmental Dynamics, 2020, 249, 1243-1258.	1.8	2
10	Eph/ephrin Signaling and Biology of Mesenchymal Stromal/Stem Cells. Journal of Clinical Medicine, 2020, 9, 310.	2.4	7
11	FoxN1 mediates thymic cortex–medulla differentiation through modifying a developmental pattern based on epithelial tubulogenesis. Histochemistry and Cell Biology, 2019, 152, 397-413.	1.7	8
12	Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi. Frontiers in Endocrinology, 2018, 9, 135.	3.5	6
13	Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Frontiers in Immunology, 2018, 9, 1020.	4.8	10
14	Eph/Ephrin-mediated stimulation of human bone marrow mesenchymal stromal cells correlates with changes in cell adherence and increased cell death. Stem Cell Research and Therapy, 2018, 9, 172.	5.5	13
15	EphB receptors, mainly EphB3, contribute to the proper development of cortical thymic epithelial cells. Organogenesis, 2017, 13, 192-211.	1.2	12
16	Increased epithelial-free areas in thymuses with altered EphB-mediated thymocyte–thymic epithelial cell interactions. Histochemistry and Cell Biology, 2017, 148, 381-394.	1.7	11
17	Eph/ephrin-B-mediated cell-to-cell interactions govern MTS20+ thymic epithelial cell development. Histochemistry and Cell Biology, 2016, 146, 167-182.	1.7	11
18	Comparative analysis of the immunomodulatory capacities of human bone marrow– and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy, 2016, 18, 1297-1311.	0.7	73

#	Article	IF	CITATIONS
19	EphrinA4 plays a critical role in α4 and αL mediated survival of human CLL cells during extravasation. Oncotarget, 2016, 7, 48481-48500.	1.8	5
20	Eph/Ephrins-Mediated Thymocyte–Thymic Epithelial Cell Interactions Control Numerous Processes of Thymus Biology. Frontiers in Immunology, 2015, 6, 333.	4.8	22
21	Conditioned deletion of ephrinB1 and/or ephrinB2 in either thymocytes or thymic epithelial cells alters the organization of thymic medulla and favors the appearance of thymic epithelial cysts. Histochemistry and Cell Biology, 2015, 143, 517-529.	1.7	8
22	Mesenchymal stem cells derived from low risk acute lymphoblastic leukemia patients promote NK cell antitumor activity. Cancer Letters, 2015, 363, 156-165.	7.2	15
23	EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. Journal of Leukocyte Biology, 2015, 98, 883-896.	3.3	16
24	Autocrine activation of canonical <scp>BMP</scp> signaling regulates <scp>PD</scp> â€ <scp>L</scp> 1 and <scp>PD</scp> â€ <scp>L</scp> 2 expression in human dendritic cells. European Journal of Immunology, 2014, 44, 1031-1038.	2.9	23
25	Lympho-granulocytic tissue associated with the wall of the spiral valve in the African lungfish Protopterus annectens. Cell and Tissue Research, 2014, 355, 397-407.	2.9	4
26	Mesenchymal Stromal Cells Derived from the Bone Marrow of Acute Lymphoblastic Leukemia Patients Show Altered BMP4 Production: Correlations with the Course of Disease. PLoS ONE, 2014, 9, e84496.	2.5	39
27	Eph/ephrinB signalling is involved in the survival of thymic epithelial cells. Immunology and Cell Biology, 2013, 91, 130-138.	2.3	17
28	Expression of BMPRIA on human thymic NK cell precursors: role of BMP signaling in intrathymic NK cell development. Blood, 2012, 119, 1861-1871.	1.4	26
29	Developing Tâ€cell migration: role of semaphorins and ephrins. FASEB Journal, 2012, 26, 4390-4399.	0.5	20
30	Biology of Stem Cells: The Role of Microenvironments. Advances in Experimental Medicine and Biology, 2012, 741, 135-151.	1.6	18
31	Wnt5a Skews Dendritic Cell Differentiation to an Unconventional Phenotype with Tolerogenic Features. Journal of Immunology, 2011, 187, 4129-4139.	0.8	73
32	The Eph/ephrinB signal balance determines the pattern of Tâ€cell maturation in the thymus. Immunology and Cell Biology, 2011, 89, 844-852.	2.3	27
33	The canonical BMP signaling pathway is involved in human monocyteâ€derived dendritic cell maturation. Immunology and Cell Biology, 2011, 89, 610-618.	2.3	31
34	The CXCL12/CXCR4 Pair in Aged Human Thymus. NeuroImmunoModulation, 2010, 17, 217-220.	1.8	8
35	EphB2-mediated interactions are essential for proper migration of T cell progenitors during fetal thymus colonization. Journal of Leukocyte Biology, 2010, 88, 483-494.	3.3	40
36	Transient Â-catenin stabilization modifies lineage output from human thymic CD34+CD1a- progenitors. Journal of Leukocyte Biology, 2010, 87, 405-414.	3.3	18

#	Article	IF	CITATIONS
37	Eph-ephrin bidirectional signaling comes into the context of lymphocyte transendothelial migration. Cell Adhesion and Migration, 2010, 4, 363-367.	2.7	18
38	Mesenchymal stem cells: biological properties and clinical applications. Expert Opinion on Biological Therapy, 2010, 10, 1453-1468.	3.1	147
39	On the role of Eph signalling in thymus histogenesis; EphB2/B3 and the organizing of the thymic epithelial network. International Journal of Developmental Biology, 2009, 53, 971-982.	0.6	27
40	Cellâ€autonomous role of EphB2 and EphB3 receptors in the thymic epithelial cell organization. European Journal of Immunology, 2009, 39, 2916-2924.	2.9	19
41	Organizing the Thymus Gland. Annals of the New York Academy of Sciences, 2009, 1153, 14-19.	3.8	16
42	Expression profile of Eph receptors and ephrin ligands in healthy human B lymphocytes and chronic lymphocytic leukemia B-cells. Leukemia Research, 2009, 33, 395-406.	0.8	26
43	Eph and ephrin: Key molecules for the organization and function of the thymus gland. Inmunologia (Barcelona, Spain: 1987), 2009, 28, 19-31.	0.1	3
44	Role of BMP signalling in peripheral CD4+ T cell proliferation. Inmunologia (Barcelona, Spain: 1987), 2009, 28, 125-130.	0.1	6
45	Stem Cell Populations in Adult Bone Marrow: Phenotypes and Biological Relevance for Production of Somatic Stem Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 177-186.	0.1	2
46	CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunology Letters, 2008, 120, 72-78.	2.5	25
47	Survival and function of human thymic dendritic cells are dependent on autocrine Hedgehog signaling. Journal of Leukocyte Biology, 2008, 83, 1476-1483.	3.3	24
48	Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6608-6613.	7.1	65
49	Effects of Glucocorticoids on the Developing Thymus. NeuroImmune Biology, 2007, , 169-187.	0.2	0
50	EphrinB1â€EphB signaling regulates thymocyteâ€epithelium interactions involved in functional T cell development. European Journal of Immunology, 2007, 37, 2596-2605.	2.9	50
51	Bone morphogenetic protein-2/4 signalling pathway components are expressed in the human thymus and inhibit early T-cell development. Immunology, 2007, 121, 94-104.	4.4	50
52	Ontogeny of the immune system of fish. Fish and Shellfish Immunology, 2006, 20, 126-136.	3.6	524
53	Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Developmental Biology, 2006, 292, 189-204.	2.0	55
54	Conserved Functions of Ikaros in Vertebrate Lymphocyte Development: Genetic Evidence for Distinct Larval and Adult Phases of T Cell Development and Two Lineages of B Cells in Zebrafish. Journal of Immunology, 2006, 177, 2463-2476.	0.8	115

#	Article	IF	CITATIONS
55	Prolactin affects both survival and differentiation of T-cell progenitors. Journal of Neuroimmunology, 2005, 160, 135-145.	2.3	53
56	Sonic Hedgehog Is Produced by Follicular Dendritic Cells and Protects Germinal Center B Cells from Apoptosis. Journal of Immunology, 2005, 174, 1456-1461.	0.8	71
57	Sonic Hedgehog Regulates Early Human Thymocyte Differentiation by Counteracting the IL-7-Induced Development of CD34+ Precursor Cells. Journal of Immunology, 2004, 173, 5046-5053.	0.8	53
58	Prolactin stimulates maturation and function of rat thymic dendritic cells. Journal of Neuroimmunology, 2004, 153, 83-90.	2.3	28
59	Aging of the vertebrate immune system. Microscopy Research and Technique, 2003, 62, 477-481.	2.2	44
60	Age-dependent changes in thymic macrophages and dendritic cells. Microscopy Research and Technique, 2003, 62, 501-507.	2.2	44
61	Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nature Genetics, 2003, 34, 59-64.	21.4	132
62	The role of morphogens in T-cell development. Trends in Immunology, 2003, 24, 197-206.	6.8	63
63	Expression of Hedgehog Proteins in the Human Thymus. Journal of Histochemistry and Cytochemistry, 2003, 51, 1557-1566.	2.5	56
64	Expression and Function of the Eph A Receptors and Their Ligands Ephrins A in the Rat Thymus. Journal of Immunology, 2002, 169, 177-184.	0.8	58
65	Rat Peripheral CD4+CD8+T Lymphocytes Are Partially Immunocompetent Thymus-Derived Cells That Undergo Post-Thymic Maturation to Become Functionally Mature CD4+T Lymphocytes. Journal of Immunology, 2002, 168, 5005-5013.	0.8	45
66	Stromal cell–derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood, 2002, 99, 546-554.	1.4	121
67	Expression of immunoglobulin heavy chain transcripts (VH-families, IgM, and IgD) in head kidney and spleen of the Atlantic cod (Gadus morhua L.). Developmental and Comparative Immunology, 2001, 25, 291-302.	2.3	57
68	Delineation of Intrathymic T, NK, and Dendritic Cell (DC) Progenitors in Fetal and Adult Rats: Demonstration of a Bipotent T/DC Intermediate Precursor. Journal of Immunology, 2001, 167, 3635-3641.	0.8	12
69	Distinct Mechanisms Contribute to Generate and Change the CD4:CD8 Cell Ratio During Thymus Development: A Role for the Notch Ligand, Jagged1. Journal of Immunology, 2001, 166, 5898-5908.	0.8	43
70	Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403, 776-781.	27.8	1,491
71	Analysis of the Human Neonatal Thymus: Evidence for a Transient Thymic Involution. Journal of Immunology, 2000, 164, 6260-6267.	0.8	37
72	Effect of Melatonin Treatment on 24â€h Variations in Responses to Mitogens and Lymphocyte Subset Populations in Rat Submaxillary Lymph Nodes. Journal of Neuroendocrinology, 2000, 12, 758-765.	2.6	38

5

#	Article	IF	CITATIONS
73	Role of Glucocorticoids in Early T ell Differentiation. Annals of the New York Academy of Sciences, 2000, 917, 732-740.	3.8	8
74	Accelerated Maturation of the Thymic Stroma in the Progeny of Adrenalectomized Pregnant Rats. NeuroImmunoModulation, 1999, 6, 23-30.	1.8	9
75	Development of rat CD45+ 13-day-old fetal liver cells in SCID mouse fetal thymic organ cultures. International Immunology, 1999, 11, 1119-1129.	4.0	4
76	Glucocorticoid-mediated regulation of thymic dendritic cell function. International Immunology, 1999, 11, 1217-1224.	4.0	17
77	Early differentiation of thymic dendritic cells in the absence of glucocorticoids. Journal of Neuroimmunology, 1999, 94, 103-108.	2.3	16
78	Partial blockade of T-cell differentiation during ontogeny and marked alterations of the thymic microenvironment in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroimmunology, 1999, 98, 157-167.	2.3	36
79	Early hematopoiesis and developing lymphoid organs in the zebrafish. Developmental Dynamics, 1999, 214, 323-336.	1.8	259
80	Early hematopoiesis and developing lymphoid organs in the zebrafish. Developmental Dynamics, 1999, 214, 323-336.	1.8	6
81	Lymphocyte development in fish and amphibians. Immunological Reviews, 1998, 166, 199-220.	6.0	173
82	Seasonal changes in the lymphoid organs of wild brown trout, Salmo trutta L: A morphometrical study. Veterinary Immunology and Immunopathology, 1998, 64, 267-278.	1.2	26
83	Thymic barriers to antigen entry during the post-hatching development of the thymus of rainbow trout,Oncorhynchus mykiss. Fish and Shellfish Immunology, 1998, 8, 157-170.	3.6	25
84	Appearance and Maturation of T-Cell Subsets During Rat Thymus Ontogeny. Autoimmunity, 1998, 5, 319-331.	0.6	22
85	The IL-2/IL-2-Receptor Complex in the Maturation of Rat T-Cell Progenitors. Autoimmunity, 1998, 6, 141-147.	0.6	1
86	Role of Prolactin in the Recovered T-Cell Development of Early Partially Decapitated Chicken Embryo. Autoimmunity, 1998, 5, 183-195.	0.6	12
87	Role of IL-2 in rat fetal thymocyte development. International Immunology, 1997, 9, 1589-1599.	4.0	8
88	Expression of ZebrafishragGenes during Early Development Identifies the Thymus. Developmental Biology, 1997, 182, 331-341.	2.0	191
89	Monoclonal antibodies specific for porcine monocytes/macrophages: macrophage heterogeneity in the pig evidenced by the expression of surface antigens. Tissue Antigens, 1997, 49, 403-413.	1.0	37
90	Interleukinâ€7 treatment promotes the differentiation pathway of Tâ€cellâ€receptorâ€î±Î² cells selectively to the CD8 + cell lineage. Immunology, 1997, 92, 457-464.	4.4	15

#	Article	IF	CITATIONS
91	Cells and Tissues of the Immune System of Fish. Fish Physiology, 1996, , 1-62.	0.8	76
92	In VitroandIn SituCharacterization of Fish Thymic Nurse Cells. Autoimmunity, 1996, 5, 17-24.	0.6	17
93	T-dependent areas in the chicken bursa of fabricius: An immunohistological study. The Anatomical Record, 1995, 242, 91-95.	1.8	16
94	T-Cell Development in Early Partially Decapitated Chicken Embryos. Autoimmunity, 1995, 4, 211-226.	0.6	2
95	γ/δ Cells in Fetal, Neonatal, and Adult Rat Lymphoid Organs. Autoimmunity, 1995, 4, 181-188.	0.6	20
96	Two different subpopulations of Ig-bearing cells in lymphoid organs of rainbow trout. Developmental and Comparative Immunology, 1995, 19, 79-86.	2.3	24
97	Histopathology of the thymus in Saprolegnia-infected wild brown trout, Salmo trutta L Veterinary Immunology and Immunopathology, 1995, 47, 163-172.	1.2	17
98	Changes in the Blood-Thymus Barrier of Adult Rats after Estradiol-Treatment. Immunobiology, 1995, 192, 231-248.	1.9	17
99	Prolactin and early T-cell development in embryonic chicken. Trends in Immunology, 1994, 15, 524-526.	7.5	19
100	Seasonal intrathymic erythropoietic activity in trout. Developmental and Comparative Immunology, 1994, 18, 409-420.	2.3	11
101	Ultrastructural changes in the adult rat thymus after estradiol benzoate treatment. Tissue and Cell, 1994, 26, 169-179.	2.2	15
102	The Neuro-endocrine Component of the Rat Thymus: Studies on Cultured Thymic Fragments Before and After Transplantation in Congenitally Athymic and Euthymic Rats. Brain, Behavior, and Immunity, 1993, 7, 1-15.	4.1	20
103	Characterisation of monoclonal antibodies against heavy and light chains of trout immunoglobulin. Fish and Shellfish Immunology, 1993, 3, 237-251.	3.6	34
104	Changes in the thymus and spleen of the turtle Mauremys caspica after testosterone injection: A morphometric study. Developmental and Comparative Immunology, 1992, 16, 165-174.	2.3	11
105	Transplantation of Cultured Thymic Fragments in Congenitally Athymic and Euthymic Rats Culture with Deoxyguanosine or Cyclosporin A does not influence the Histologic Characteristics and Outcome after Transplantation in Syngeneic and Allogeneic Combinations. Scandinavian Journal of Immunology, 1992, 35, 575-587.	2.7	4
106	Fine structure and histochemistry of the ampullary organ of the urodele amphibian Pleurodeles. Tissue and Cell, 1991, 23, 17-28.	2.2	2
107	Testosterone induces lymphopenia in turtles. Veterinary Immunology and Immunopathology, 1991, 28, 173-180.	1.2	21
108	White pulp compartments in the spleen of the turtle Mauremys caspica. Cell and Tissue Research, 1991, 266, 605-613.	2.9	9

7

#	Article	IF	CITATIONS
109	The Thymic Microenvironment of the Common Sole, <i>Solea solea</i> . Acta Zoologica, 1991, 72, 209-216.	0.8	17
110	Post-hatching development of the thymic epithelial cells in the rainbow troutSalmo gairdneri: An ultrastructural study. American Journal of Anatomy, 1991, 190, 299-307.	1.0	25
111	Effects of early partial decapitation on the ontogenic development of chicken lymphoid organs. I. Thymus. American Journal of Anatomy, 1991, 191, 57-66.	1.0	10
112	Ontogeny of IgM-producing cells in the lymphoid organs of rainbow trout, Salmo gairdneri Richardson: an immuno- and enzyme-histochemical study. Journal of Fish Biology, 1990, 36, 159-173.	1.6	78
113	Histology and Ultrastructure of the Cranial Lymphohaemopoietic Tissue in <i>Chimaera monstrosa</i> (Pisces, Holocephali). Acta Zoologica, 1990, 71, 97-106.	0.8	11
114	Demonstration of immunoreactive vasoactive intestinal peptide (IR-VIP) and somatostatin (IR-SOM) in rat thymus. Brain, Behavior, and Immunity, 1990, 4, 151-161.	4.1	70
115	Ultrastructural changes in the thymus of the turtle Mauremys caspica in relation to the seasonal cycle. Cell and Tissue Research, 1989, 256, 213-9.	2.9	16
116	Macrophages and Reticulum Cells in the Spleen of the Dogfish, <i>Scyliorhinus canicula</i> . Acta Zoologica, 1989, 70, 221-227.	0.8	10
117	Different sensitivity to the dexamethasone treatment of the lymphoid organs of Rana perezi in two different seasons. Developmental and Comparative Immunology, 1989, 13, 57-64.	2.3	8
118	1.8 Monoclonal antibodies against rainbow trout immunoglobulin. Developmental and Comparative Immunology, 1989, 13, 348-349.	2.3	0
119	2.8 Tissues involved in immune responses. Developmental and Comparative Immunology, 1989, 13, 359-360.	2.3	0
120	2.9 Structural and histochemical demonstration of non-lymphoid cell populations in the thymus of the rainbow trout. Developmental and Comparative Immunology, 1989, 13, 360-361.	2.3	1
121	2.15 Ontogeny of the thymic microenvironments in the rainbow trout, Salmo gairdneri: An ultrastructural study. Developmental and Comparative Immunology, 1989, 13, 364-365.	2.3	0
122	Macrophages and epithelial cells of the thymus gland. An ultrastructural study in the natterjack, Bufo calamita. Tissue and Cell, 1989, 21, 69-81.	2.2	3
123	Postnatal development of the splenic white pulp in the golden hamster Mesocricetus auratus. I the periarterial lymphoid sheath (PALS). Tissue and Cell, 1989, 21, 403-417.	2.2	3
124	Lymphoid Components in the Branchial Cavernous Body of the Ammocoete of <i>Petromyzon marinus</i> . Acta Zoologica, 1988, 69, 23-28.	0.8	4
125	Occurrence of lymphohaemopoietic tissue in the meninges of the stingrayDasyatis akajei (Elasmobranchii, Chondricthyes). American Journal of Anatomy, 1988, 183, 268-276.	1.0	15
126	Morphological, histochemical, and ultrastructural characterization of the accessory cells of neuromasts in the salamander Pleurodeles waltlii. Cell and Tissue Research, 1988, 254, 233.	2.9	3

#	Article	IF	CITATIONS
127	Alterations in the peripheral lymphoid organs and differential leukocyte counts in Saprolegnia-infected brown trout, Salmo trutta fario. Veterinary Immunology and Immunopathology, 1988, 18, 181-193.	1.2	21
128	Effects of neonatal treatment with estrogens on the development of the thymus in rats. Developmental and Comparative Immunology, 1988, 12, 375-383.	2.3	17
129	Effects of dexamethasone on the lymphoid organs of Rana perezi. Developmental and Comparative Immunology, 1987, 11, 375-384.	2.3	22
130	Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lamprey Petromyzon marinus. Developmental and Comparative Immunology, 1987, 11, 79-93.	2.3	31
131	Electron microscopic examination of antigen uptake by salmonid gill cells after bath immunization with a bacterin. Journal of Fish Biology, 1987, 31, 209-217.	1.6	78
132	Trapping of intraperitoneal-injected Yersinia ruckeri in the lymphoid organs of Carassius auratus: the role of melano-macrophage centres. Journal of Fish Biology, 1987, 31, 235-237.	1.6	18
133	Structure and function of the melano-macrophage centres of the goldfishCarassius auratus. Veterinary Immunology and Immunopathology, 1986, 12, 117-126.	1.2	124
134	Ultrastructural changes in the spleen of the natterjack, Bufo calamita, after antigenic stimulation. Cell and Tissue Research, 1985, 239, 435-41.	2.9	10
135	Presence of presumptive interdigitating cells in the spleen of the natterjack,Bufo calamita. Experientia, 1985, 41, 1393-1394.	1.2	7
136	Dendritic immune complex trapping cells in the spleen of the snake, Python reticulatus. Developmental and Comparative Immunology, 1985, 9, 641-652.	2.3	21
137	Seasonal changes in the thymus and spleen of the turtle, Mauremys caspica . A morphometrical, light microscopical study. Developmental and Comparative Immunology, 1985, 9, 653-668.	2.3	35
138	Interdigitating cells in the thymus of the turtle Mauremys caspica. Cell and Tissue Research, 1984, 238, 381-5.	2.9	13
139	Plasma cells in adult Atlantic hagfish, Myxine glutinosa. Cell and Tissue Research, 1984, 235, 691-3.	2.9	19
140	The Lymphoâ€Hemopoietic Organs of the Anadromous Sea Lamprey, <i>Petromyzon marinus.</i> A Comparative Study throughout its Life Span. Acta Zoologica, 1984, 65, 1-15.	0.8	20
141	Erythropoiesis in the thymus of the spotless starling, Sturnus unicolor. Cell and Tissue Research, 1983, 232, 445-455.	2.9	18
142	Structure of the non-lymphoid cells during the postnatal development of the rat lymph nodes. Cell and Tissue Research, 1983, 229, 219-32.	2.9	58
143	Aging changes in lymphopoietic and myelopoietic organs of the annual cyprinodont fish, Nothobranchius guentheri. Experimental Gerontology, 1983, 18, 29-38.	2.8	48
144	Non-lymphoid cells of the anuran spleen: An ultrastructural study in the natterjack,Bufo calamita. American Journal of Anatomy, 1983, 167, 83-94.	1.0	16

#	Article	IF	CITATIONS
145	Postnatal development of the non-lymphoid elements in the rat lymph node. Connective reticulum cells, macrophages and postcapillary venules. Developmental and Comparative Immunology, 1983, 7, 347-355.	2.3	4
146	Relationships between neuroendocrine and immune systems in amphibians and reptiles. Developmental and Comparative Immunology, 1983, 7, 771-774.	2.3	32
147	Lymphoid organs of teleost fish. III. Splenic lymphoid tissue of Rutilus rutilus and Gobio gobio. Developmental and Comparative Immunology, 1982, 6, 87-94.	2.3	38
148	Ultrastructure of gut-associated lymphoid tissue (GALT) in the amphibian urodele, Pleurodeles waltlii. Cell and Tissue Research, 1982, 224, 663-71.	2.9	10
149	Ultrastructural study of interdigitating cells in the thymus of the spotless starling, Sturnus unicolor. Cell and Tissue Research, 1982, 225, 687-91.	2.9	8
150	Direct contacts between nerve endings and lymphoid cells in the jugular body ofRana pipiens. Experientia, 1982, 38, 623-624.	1.2	6
151	Lymphoid Organs and Blood Cells of the Caecilian <i>Ichthyophis kohtaoensis</i> . Acta Zoologica, 1982, 63, 11-16.	0.8	13
152	Gut-Associated lymphoid tissue (GALT) in the amphibian urodelePleurodeles waltl. Journal of Morphology, 1982, 173, 35-41.	1.2	23
153	Plasma cell clusters in the interstitial tissue of the testes of Acanthodactylus erythrurus (Reptilia,) Tj ETQq1 1 0.	784314 rg 0.4	BT 1Overlock
154	The jugular body in anuran amphibians: Role in immunity. Developmental and Comparative Immunology, 1981, 5, 129-135.	2.3	2
155	The spleen of Mauremys caspica. A histophysiological model for comparative immunology. Developmental and Comparative Immunology, 1981, 5, 137-142.	2.3	2
156	Ultrastructure of elasmobranch lymphoid tissue. 2. Leydig's and epigonal organs. Developmental and Comparative Immunology, 1981, 5, 43-52.	2.3	31
157	Ultrastructure of Elasmobranch and Teleost Erythrocytes. Acta Zoologica, 1981, 62, 129-135.	0.8	14
158	Reptilian bone marrow. An ultrastructural study in the spanish lizard,Lacerta hispanica. Journal of Morphology, 1981, 168, 137-149.	1.2	30
159	Ultrastructure of splenic white pulp of the turtle, Mauremys caspica. Cell and Tissue Research, 1981, 220, 845-55.	2.9	26
160	Ultrastructure of the jugular body of Rana pipiens. Cell and Tissue Research, 1981, 221, 193-202.	2.9	7
161	Plasma cells in the ammocoete of Petromyzon marinus. Cell and Tissue Research, 1981, 221, 203-208.	2.9	22
162	Lymphoid Organs of Teleost Fish. I. Ultrastructure of the Thymus of Rutilus rutilus. Developmental and Comparative Immunology, 1981, 5, 427-436.	2.3	46

#	Article	IF	CITATIONS
163	Lymphoid Organs of Teleost Fish. II. Ultrastructure of Renal Lymphoid Tissue of Rutilus rutilus and Gobio gobio. Developmental and Comparative Immunology, 1981, 5, 685-690.	2.3	28
164	Splenic Erythropoiesis and Thrombopoiesis in Elasmobranchs: An Ultrastructural Study. Acta Zoologica, 1980, 61, 59-64.	0.8	20
165	Ultrastructure of Elasmobranch and Teleost Thrombocytes. Acta Zoologica, 1980, 61, 179-182.	0.8	9
166	Gut-associated lymphoid tissue (GALT) in reptiles: Intraepithelial cells. Developmental and Comparative Immunology, 1980, 4, 87-97.	2.3	21
167	Ultrastructure of elasmobranch lymphoid tissue. 1. Thymus and spleen. Developmental and Comparative Immunology, 1980, 4, 459-471.	2.3	42
168	Ultrastructural study of the teleost fish kidney. Developmental and Comparative Immunology, 1979, 3, 55-65.	2.3	147
169	Gut-associated lymphoid tissue (GALT) in reptilia: Structure of mucosal accumulations. Developmental and Comparative Immunology, 1979, 3, 477-487.	2.3	19
170	Bone-marrow stroma: A source of mesenchymal stem cells for cell therapy. , 0, , 140-151.		0
171	The Adult Hematopoietic Niches — Cellular Composition, Histological Organization and Physiological Regulation. , 0, , .		2
172	Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Frontiers in Immunology, 0, 13, .	4.8	24