Michael R Kreutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456411/publications.pdf

Version: 2024-02-01

67 papers 3,054 citations

172386 29 h-index 51 g-index

70 all docs

70 docs citations

times ranked

70

4478 citing authors

#	Article	IF	CITATIONS
1	Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease. Translational Neurodegeneration, 2022, 11, 2.	3.6	7
2	One-step purification of tag free and soluble lamin B1 from an E. coli bacterial expression system. Protein Expression and Purification, 2022, 193, 106057.	0.6	1
3	Organization of Presynaptic Autophagy-Related Processes. Frontiers in Synaptic Neuroscience, 2022, 14, 829354.	1.3	10
4	The needs of a synapseâ€"How local organelles serve synaptic proteostasis. EMBO Journal, 2022, 41, e110057.	3.5	14
5	Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. ELife, $2021,10,10$	2.8	14
6	Dendritic Kv4.2 potassium channels selectively mediate spatial pattern separation in the dentate gyrus. IScience, 2021, 24, 102876.	1.9	6
7	Transgenic modeling of Ndr2 gene amplification reveals disturbance of hippocampus circuitry and function. IScience, 2021, 24, 102868.	1.9	3
8	The nuclear lamina is a hub for the nuclear function of Jacob. Molecular Brain, 2021, 14, 9.	1.3	6
9	Autophagy and the endolysosomal system in presynaptic function. Cellular and Molecular Life Sciences, 2021, 78, 2621-2639.	2.4	29
10	Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment. Cell Reports, 2021, 37, 109797.	2.9	11
11	Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Frontiers in Synaptic Neuroscience, 2021, 13, 787494.	1.3	7
12	Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Frontiers in Molecular Neuroscience, 2021, 14, 767384.	1.4	4
13	Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus. Neuropsychopharmacology, 2020, 45, 2120-2130.	2.8	17
14	Simple Targeted Assays for Metabolic Pathways and Signaling: A Powerful Tool for Targeted Proteomics. Analytical Chemistry, 2020, 92, 13672-13676.	3.2	1
15	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
16	Caldendrin and Calneuronsâ€"EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Frontiers in Molecular Neuroscience, 2019, 12, 16.	1.4	14
17	Radial somatic Fâ€actin organization affects growth cone dynamics during early neuronal development. EMBO Reports, 2019, 20, e47743.	2.0	20
18	SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications, 2019, 10, 5448.	5.8	64

#	Article	IF	CITATIONS
19	Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron, 2018, 97, 1110-1125.e14.	3.8	68
20	The role of 19S proteasome associated deubiquitinases in activity-dependent hippocampal synaptic plasticity. Neuropharmacology, 2018, 133, 354-365.	2.0	16
21	Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?. Neuroscientist, 2018, 24, 171-185.	2.6	67
22	Geclusterte Plastizitäbei Langzeitpotenzierung: Wie starke Synapsen bestehen bleiben, um LangzeitgedÃæhtnis aufrechtzuerhalten. Neuroforum, 2018, 24, 195-201.	0.2	0
23	N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice. Frontiers in Molecular Neuroscience, 2018, 11, 273.	1.4	19
24	Clustered plasticity in Long-Term Potentiation: How strong synapses persist to maintain long-term memory. Neuroforum, 2018, 24, A127-A132.	0.2	1
25	Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB1 Receptor and EF-Hand Calcium Sensor Interactions. Frontiers in Cell and Developmental Biology, 2018, 6, 67.	1.8	13
26	The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders. Frontiers in Molecular Neuroscience, 2018, 11, 169.	1.4	45
27	Posttranslational modification impact on the mechanism by which amyloidâ $\hat{\mathfrak{el}}^2$ induces synaptic dysfunction. EMBO Reports, 2017, 18, 962-981.	2.0	50
28	Microtubules Modulate F-actin Dynamics during Neuronal Polarization. Scientific Reports, 2017, 7, 9583.	1.6	30
29	The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Frontiers in Cellular Neuroscience, 2017, 11, 115.	1.8	51
30	Synaptic GluN2B/CaMKII- \hat{l}_{\pm} Signaling Induces Synapto-Nuclear Transport of ERK and Jacob. Frontiers in Molecular Neuroscience, 2016, 9, 66.	1.4	25
31	Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE, 2016, 11, e0162863.	1.1	3
32	A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics, 2016, 12, e1005907.	1.5	36
33	What do we learn from the murine Jacob/Nsmf gene knockout for human disease?. Rare Diseases (Austin, Tex), 2016, 4, e1241361.	1.8	8
34	Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus. Scientific Reports, 2016, 6, 21615.	1.6	41
35	Synaptonuclear messenger <scp>PRR</scp> 7 inhibits câ€Jun ubiquitination and regulates <scp>NMDA</scp> â€mediated excitotoxicity. EMBO Journal, 2016, 35, 1923-1934.	3.5	33
36	A Dendritic Golgi Satellite between ERGIC and Retromer. Cell Reports, 2016, 14, 189-199.	2.9	99

#	Article	IF	Citations
37	Proteomics of the Synapse – A Quantitative Approach to Neuronal Plasticity. Molecular and Cellular Proteomics, 2016, 15, 368-381.	2.5	61
38	A plasmid-based expression system to study protein–protein interactions at the Golgi inÂvivo. Analytical Biochemistry, 2016, 502, 50-52.	1.1	7
39	Dopamine agonists rescue Aβ–induced LTP impairment byÂSrc-family tyrosine kinases. Neurobiology of Aging, 2016, 40, 98-102.	1.5	26
40	Mature granule cells of the dentate gyrusâ€"Passive bystanders or principal performers in hippocampal function?. Neuroscience and Biobehavioral Reviews, 2016, 64, 167-174.	2.9	26
41	Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. ELife, 2016, 5, e12430.	2.8	39
42	Alternative Splicing, Expression and Cellular Localization of Calneuron-1 in the Rat and Human Brain. Journal of Histochemistry and Cytochemistry, 2015, 63, 793-804.	1.3	12
43	Macromolecular transport in synapse to nucleus communication. Trends in Neurosciences, 2015, 38, 108-116.	4.2	69
44	Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK. PLoS ONE, 2014, 9, e85924.	1.1	12
45	Inhibition of the Polyamine System Counteracts \hat{l}^2 -Amyloid Peptide-Induced Memory Impairment in Mice: Involvement of Extrasynaptic NMDA Receptors. PLoS ONE, 2014, 9, e99184.	1.1	45
46	Molecular Dynamics of the Neuronal EF-Hand Ca2+-Sensor Caldendrin. PLoS ONE, 2014, 9, e103186.	1.1	14
47	The roles of protein expression in synaptic plasticity and memory consolidation. Frontiers in Molecular Neuroscience, 2014, 7, 86.	1.4	125
48	Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Structure and Function, 2014, 219, 843-860.	1.2	23
49	Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins. Journal of Visualized Experiments, 2014, , e51310.	0.2	6
50	Encoding and Transducing the Synaptic or Extrasynaptic Origin of NMDA Receptor Signals to the Nucleus. Cell, 2013, 152, 1119-1133.	13.5	173
51	AKAP79/150 interacts with the neuronal calciumâ€binding protein caldendrin. Journal of Neurochemistry, 2012, 122, 714-726.	2.1	17
52	Ca2+ sensor proteins in dendritic spines: a race for Ca2+. Frontiers in Molecular Neuroscience, 2012, 5, 61.	1.4	33
53	Long-Distance Signaling from Synapse to Nucleus via Protein Messengers. Advances in Experimental Medicine and Biology, 2012, 970, 355-376.	0.8	15
54	From Synapse to Nucleus and Back AgainCommunication over Distance within Neurons. Journal of Neuroscience, 2011, 31, 16045-16048.	1.7	34

#	Article	IF	CITATIONS
55	Early neuronal dysfunction by amyloid \hat{l}^2 oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiology of Aging, 2011, 32, 2219-2228.	1.5	223
56	Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression. PLoS ONE, 2011, 6, e17276.	1.1	46
57	Post-translational Membrane Insertion of Tail-anchored Transmembrane EF-hand Ca2+ Sensor Calneurons Requires the TRC40/Asna1 Protein Chaperone. Journal of Biological Chemistry, 2011, 286, 36762-36776.	1.6	28
58	RapGAPs in brain: multipurpose players in neuronal Rap signalling. European Journal of Neuroscience, 2010, 32, 1-9.	1.2	50
59	Dendritic mRNA Targeting of Jacob and N-Methyl-d-aspartate-induced Nuclear Translocation after Calpain-mediated Proteolysis. Journal of Biological Chemistry, 2009, 284, 25431-25440.	1.6	25
60	Calneurons provide a calcium threshold for <i>trans</i> -Golgi network to plasma membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9093-9098.	3.3	70
61	Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends in Neurosciences, 2009, 32, 392-401.	4.2	88
62	SPAR2, a novel SPARâ€related protein with GAP activity for Rap1 and Rap2. Journal of Neurochemistry, 2008, 104, 187-201.	2.1	35
63	Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus. PLoS Biology, 2008, 6, e34.	2.6	177
64	Neuronal Ca2+ signaling via caldendrin and calneurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1229-1237.	1.9	48
65	ProSAP-interacting Protein 1 (ProSAPiP1), a Novel Protein of the Postsynaptic Density That Links the Spine-associated Rap-Gap (SPAR) to the Scaffolding Protein ProSAP2/Shank3. Journal of Biological Chemistry, 2006, 281, 13805-13816.	1.6	60
66	An Electrotransfection Protocol for Yeast Two-Hybrid Library Screening. Analytical Biochemistry, 2001, 293, 149-152.	1.1	13
67	Caldendrin, a Novel Neuronal Calcium-binding Protein Confined to the Somato-dendritic Compartment. Journal of Biological Chemistry, 1998, 273, 21324-21331.	1.6	101