Kampanart Theinnoi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7456234/kampanart-theinnoi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 657 11 25 g-index

30 728 4 3.58 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
26	Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). <i>Energy</i> , 2007 , 32, 2072-2080	7.9	252
25	Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling. <i>Fuel</i> , 2009 , 88, 1031-1041	7.1	83
24	Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study. <i>Energy & Double Study</i> , 2006, 20, 2377-2384	4.1	72
23	Effect of hydrogen on butanolBiodiesel blends in compression ignition engines. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1624-1635	6.7	50
22	Promoting hydrocarbon-SCR of NOx in diesel engine exhaust by hydrogen and fuel reforming. International Journal of Hydrogen Energy, 2009 , 34, 7842-7850	6.7	45
21	Hydrogen Promotion of Low-Temperature Passive Hydrocarbon-Selective Catalytic Reduction (SCR) over a Silver Catalyst. <i>Energy & Double Catalyst. Energy & Double Catalyst. Ene</i>	4.1	34
20	Enhancing the NO2/NOx ratio in compression ignition engines by hydrogen and reformate combustion, for improved aftertreatment performance. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8723-8732	6.7	31
19	Engine Performance of Dual Fuel Operation with In-cylinder Injected Diesel Fuels and In-Port Injected DME. <i>Energy Procedia</i> , 2017 , 142, 461-467	2.3	18
18	Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst. <i>Applied Catalysis A: General</i> , 2019 , 574, 33-40	5.1	12
17	Hydrogen Production via the Catalytic Partial Oxidation of Ethanol on a PlatinumRhodium Catalyst: Effect of the Oxygen-to-Ethanol Molar Ratio and the Addition of Steam. <i>Energy & Equal Street</i> 2019, 33, 6742-6753	4.1	11
16	Engine performance and emissions from the combustion of low-temperature Fischer Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends. <i>International Journal of Vehicle Design</i> , 2009 , 50, 196	2.4	11
15	GC-MS determination of low hydrocarbon species (C1\$\textit{L}6) from a diesel partial oxidation reformer. International Journal of Hydrogen Energy, 2008 , 33, 7074-7083	6.7	7
14	Influence of Fuel Properties, Hydrogen, and Reformate Additions on Diesel-Biogas Dual-Fueled Engine. <i>Journal of Energy Engineering - ASCE</i> , 2014 , 140,	1.7	5
13	Combustion Characteristics and Particulate Matter Number Size Study of Ethanol and Diesel Reactivity Controlled Compression Ignition Engine 2017 ,		5
12	Modeling of Hydrogen Production from Catalytic Partial Oxidation of Ethanol over a Platinum R hodium-Supported Catalyst. <i>Energy & Energy & 2021</i> , 35, 4404-4417	4.1	5
11	Application of Exhaust Gas Fuel Reforming in Diesel Engines Towards the Improvement Urban Air Qualities. <i>Energy Procedia</i> , 2018 , 152, 875-882	2.3	4
10	Effect of Physical Properties of Porous Combustor on Radiant Output and Fuel-Preheated Efficiency of a Non-Sprayed Porous Burner. <i>Applied Mechanics and Materials</i> , 2013 , 421, 819-825	0.3	2

LIST OF PUBLICATIONS

9	Nanoparticle Components and Number-Size Distribution of Waste Cooking Oil-Based Biodiesel Exhaust Gas from a Diesel Particulate Filter-Equipped Engine <i>ACS Omega</i> , 2022 , 7, 3384-3394	3.9	2	
8	Insight into Nanoparticle-Number-Derived Characteristics of Precharged Biodiesel Exhaust Gas in Nonthermal Plasma State <i>ACS Omega</i> , 2022 , 7, 5376-5384	3.9	2	
7	Promotion effect of hydrogen addition in selective catalytic reduction of nitrogen oxide emissions from diesel engines fuelled with diesel-biodiesel-ethanol blends. <i>AEJ - Alexandria Engineering Journal</i> , 2021 ,	6.1	1	
6	Effects of Diesel-Biodiesel-Ethanol Fuel Blend on a Passive Mode of Selective Catalytic Reduction to Reduce NO Emission from Real Diesel Engine Exhaust Gas. <i>ACS Omega</i> , 2021 , 6, 27443-27453	3.9	1	
5	Effect of Diesel Biodiesel Ethanol Fuel Blends on Low Temperature NOX Reduction Activity over a Lean NOX Catalyst 2018 ,		1	
4	Experimental Study on the Behavior of a Common Rail Diesel-Engine Fueled with Diesel Dimethyl Ether Dual Fuel on Engine Performance 2018 ,		1	
3	Impact of Compressed Biogas on Combustion and Exhaust Emission Characteristic from Spark Ignition Engine 2018 ,		1	
2	Impact of High-Voltage Discharge After-Treatment Technology on Diesel Engine Particulate Matter Composition and Gaseous Emissions. <i>ACS Omega</i> , 2021 , 6, 21181-21192	3.9	1	
1	The Comparative Study on Compressed Natural Gas (CNG) and Compressed Biomethane Gas (CBG) Fueled in a Spark Ignition Engine. <i>E3S Web of Conferences</i> , 2021 , 302, 01005	0.5	O	