
Eric Drockenmuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-linked polymer microparticles with tunable surface properties by the combination of suspension free radical copolymerization and Click chemistry. Journal of Colloid and Interface Science, 2022, 607, 1687-1698.	9.4	7
2	Multiscale Structure of Poly(ionic liquid)s in Bulk and Solutions by Small-Angle Neutron Scattering. Macromolecules, 2022, 55, 4111-4118.	4.8	4
3	Effects of repeat unit charge density on the physical and electrochemical properties of novel heterocationic poly(ionic liquid)s. New Journal of Chemistry, 2021, 45, 53-65.	2.8	8
4	Studies on ion dynamics of polymerized ionic liquids through the free volume theory. Polymer, 2021, 212, 123286.	3.8	5
5	Tuning the Viscosity Profiles of High- <i>T</i> _g Poly(1,2,3-triazolium) Covalent Adaptable Networks by the Chemical Structure of the N-Substituents. Macromolecules, 2021, 54, 3281-3292.	4.8	33
6	Slip and Friction Mechanisms at Polymer Semi-Dilute Solutions/Solid Interfaces. Macromolecules, 2021, 54, 4910-4917.	4.8	1
7	Synthesis and Structure/Properties Correlations of Fluorinated Poly(1,2,3-triazolium)s. Chemistry Africa, 2020, 3, 759-768.	2.4	2
8	Structurally Related Scaling Behavior in Ionic Systems. Journal of Physical Chemistry B, 2020, 124, 1240-1244.	2.6	12
9	Viscoelasticity-Induced Onset of Slip at the Wall for Polymer Fluids. ACS Macro Letters, 2020, 9, 924-928.	4.8	6
10	Fast secondary dynamics for enhanced charge transport in polymerized ionic liquids. Physical Review E, 2020, 101, 032606.	2.1	10
11	Rheological Properties of Covalent Adaptable Networks with 1,2,3-Triazolium Cross-Links: The Missing Link between Vitrimers and Dissociative Networks. Macromolecules, 2020, 53, 1884-1900.	4.8	131
12	Comparison of poly(ethylene glycol)-based networks obtained by cationic ring opening polymerization of neutral and 1,2,3-triazolium diepoxy monomers. Polymer Chemistry, 2020, 11, 1894-1905.	3.9	9
13	Access to Thermodynamic and Viscoelastic Properties of Poly(ionic liquid)s Using High-Pressure Conductivity Measurements. ACS Macro Letters, 2019, 8, 996-1001.	4.8	8
14	Exchange Process in the Dielectric Loss of Molecular and Macromolecular Ionic Conductors in the Interfacial Layers Formed by Electrode Polarization Effects. Journal of Physical Chemistry B, 2019, 123, 8532-8542.	2.6	5
15	Main hain poly(1,2,3â€ŧriazolium hydroxide)s obtained through AA+BB click polyaddition as anion exchange membranes. Polymer International, 2019, 68, 1591-1598.	3.1	11
16	Friction of Polymers: from PDMS Melts to PDMS Elastomers. ACS Macro Letters, 2018, 7, 112-115.	4.8	27
17	Random heteropolymers preserve protein function in foreign environments. Science, 2018, 359, 1239-1243.	12.6	196
18	Reusable Enzymatic Fiber Mats for Neurotoxin Remediation in Water. ACS Applied Materials & Interfaces, 2018, 10, 44216-44220.	8.0	11

ERIC DROCKENMULLER

#	Article	IF	CITATIONS
19	Temperature-Controlled Slip of Polymer Melts on Ideal Substrates. Physical Review Letters, 2018, 121, 177802.	7.8	12
20	Partially Biosourced Poly(1,2,3-triazolium)-Based Diblock Copolymers Derived from Levulinic Acid. Macromolecules, 2018, 51, 5820-5830.	4.8	17
21	A 1,2,3-triazolate lithium salt with ionic liquid properties at room temperature. Chemical Communications, 2018, 54, 9035-9038.	4.1	8
22	Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 121-126.	4.8	54
23	1,2,3-Triazolium-based linear ionic polyurethanes. Polymer Chemistry, 2017, 8, 5148-5156.	3.9	14
24	Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polymer Chemistry, 2017, 8, 910-917.	3.9	22
25	Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3â€Triazolium Crossâ€Links. Advanced Functional Materials, 2017, 27, 1703258.	14.9	153
26	Comparison of the Slip of a PDMS Melt on Weakly Adsorbing Surfaces Measured by a New Photobleaching-Based Technique. Macromolecules, 2017, 50, 5592-5598.	4.8	13
27	1,2,3â€Triazoliumâ€Based Epoxy–Amine Networks: Ion onducting Polymer Electrolytes. Macromolecular Rapid Communications, 2016, 37, 1168-1174.	3.9	31
28	Probing the effect of anion structure on the physical properties of cationic 1,2,3â€ŧriazoliumâ€based poly(ionic liquid)s. Journal of Polymer Science Part A, 2016, 54, 2191-2199.	2.3	21
29	Direct Molecular Evidence of the Origin of Slip of Polymer Melts on Grafted Brushes. Macromolecules, 2016, 49, 2348-2353.	4.8	22
30	Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. European Polymer Journal, 2016, 84, 65-76.	5.4	35
31	Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer. ACS Macro Letters, 2016, 5, 1283-1286.	4.8	70
32	Synthesis and characterization of novel biosourced building blocks from isosorbide. Designed Monomers and Polymers, 2016, 19, 108-118.	1.6	5
33	Biosourced 1,2,3-triazolium ionic liquids derived from isosorbide. New Journal of Chemistry, 2016, 40, 740-747.	2.8	17
34	Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with Hydrogenâ€Bonding Junctions. Angewandte Chemie - International Edition, 2015, 54, 11117-11121.	13.8	43
35	Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polymer Chemistry, 2015, 6, 4299-4308.	3.9	44
36	Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. Journal of the American Chemical Society, 2015, 137, 6078-6083.	13.7	407

#	Article	IF	CITATIONS
37	Triethylene glycol-based poly(1,2,3-triazolium acrylate)s with enhanced ionic conductivity. Polymer Chemistry, 2015, 6, 3521-3528.	3.9	40
38	Expanding the structural variety of poly(1,2,3-triazolium)s obtained by simultaneous 1,3-dipolar Huisgen polyaddition and N-alkylation. Polymer, 2015, 79, 309-315.	3.8	22
39	Versatile click functionalization of poly(1,2,3-triazolium ionic liquid)s. European Polymer Journal, 2015, 62, 331-337.	5.4	32
40	1,2,3-Triazolium-Based Poly(ionic liquid)s with Enhanced Ion Conducting Properties Obtained through a Click Chemistry Polyaddition Strategy. Chemistry of Materials, 2014, 26, 1720-1726.	6.7	121
41	Accelerated Solvent―and Catalystâ€Free Synthesis of 1,2,3â€Triazoliumâ€Based Poly(Ionic Liquid)s. Macromolecular Rapid Communications, 2014, 35, 794-800.	3.9	46
42	UV-Patterning of Ion Conducting Negative Tone Photoresists Using Azide-Functionalized Poly(Ionic) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
43	1,2,3â€Triazoliumâ€Based Poly(ionic liquid)s Obtained Through Click Chemistry Polyaddition. Macromolecular Chemistry and Physics, 2014, 215, 2229-2236.	2.2	38
44	(Co)Polymerization of vinyl levulinate by cobalt-mediated radical polymerization and functionalization by ketoxime click chemistry. Polymer Chemistry, 2014, 5, 2973-2979.	3.9	35
45	Photochemical isomerization of norbornadieneâ€containing polytriazoles obtained by click chemistry polyaddition. Journal of Polymer Science Part A, 2014, 52, 223-231.	2.3	8
46	Biobased vinyl levulinate as styrene replacement for unsaturated polyester resins. Journal of Polymer Science Part A, 2014, 52, 3356-3364.	2.3	46
47	1,2,3-Triazolium-based poly(acrylate ionic liquid)s. Polymer, 2014, 55, 3314-3319.	3.8	37
48	Enhancing Properties of Anionic Poly(ionic liquid)s with 1,2,3-Triazolium Counter Cations. ACS Macro Letters, 2014, 3, 658-662.	4.8	52
49	Quantitative Analysis of Interdigitation Kinetics between a Polymer Melt and a Polymer Brush. Macromolecules, 2013, 46, 6955-6962.	4.8	19
50	Toward tunable amphiphilic copolymers via CuAAC click chemistry of oligocaprolactones onto starch backbone. Carbohydrate Polymers, 2013, 96, 259-269.	10.2	23
51	Main hain 1,2,3â€ŧriazoliumâ€based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. Journal of Polymer Science Part A, 2013, 51, 34-38.	2.3	79
52	Photoresponsive polyamides containing pentamethylated norbornadiene moieties: Synthesis and photochemical properties under sunlight irradiation. Journal of Polymer Science Part A, 2013, 51, 4650-4656.	2.3	4
53	RAFT Polymerization of Bio-Based 1-Vinyl-4-dianhydrohexitol-1,2,3-triazole Stereoisomers Obtained via Click Chemistry. Biomacromolecules, 2012, 13, 4138-4145.	5.4	34
54	Synthesis and polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles. Polymer Chemistry, 2012, 3, 1680-1692.	3.9	54

#	Article	IF	CITATIONS
55	1,4:3,6-Dianhydrohexitols: Original platform for the design of biobased polymers using robust, efficient, and orthogonal chemistry. Pure and Applied Chemistry, 2012, 85, 511-520.	1.9	17
56	Crosslinked PDMS elastomers and coatings from the thermal curing of vinylâ€functionalized PDMS and a diazide aliphatic crosslinker. Journal of Polymer Science Part A, 2012, 50, 98-107.	2.3	18
57	Synthesis of wellâ€defined poly(dimethylsiloxane) telechelics having nitrobenzoxadiazole fluorescent chainâ€ends via thiolâ€ene coupling. Journal of Polymer Science Part A, 2012, 50, 1827-1833.	2.3	7
58	Improving the control of styrene polymerization at 60 °C using a dialkylated αâ€hydrogenated nitroxide. Journal of Polymer Science Part A, 2012, 50, 3750-3757.	2.3	6
59	Poly(ethylene) brushes grafted to silicon substrates. Polymer Chemistry, 2012, 3, 1838-1845.	3.9	31
60	Poly(ethylene glycol) brushes grafted to silicon substrates by click chemistry: influence of PEG chain length, concentration in the grafting solution and reaction time. Polymer Chemistry, 2011, 2, 348-354.	3.9	43
61	Precise Synthesis of Molecularly Defined Oligomers and Polymers by Orthogonal Iterative Divergent/Convergent Approaches. Macromolecular Rapid Communications, 2011, 32, 147-168.	3.9	93
62	Synthesis of thermosensitive guarâ€based hydrogels with tunable physicoâ€chemical properties by click chemistry. Journal of Polymer Science Part A, 2010, 48, 2733-2742.	2.3	36
63	Solving the loss of orthogonality during the polyaddition of αâ€azideâ€ï‰â€alkyne monomers catalyzed by Cu(PPh ₃) ₃ Br: Application to the synthesis of highâ€molar mass polytriazoles. Journal of Polymer Science Part A, 2010, 48, 2470-2476.	2.3	43
64	Photoâ€crosslinked fluorinated thin films from azidoâ€functionalized random copolymers. Journal of Polymer Science Part A, 2010, 48, 3888-3895.	2.3	20
65	New amphiphilic glycopolymers by click functionalization of random copolymers – application to the colloidal stabilisation of polymer nanoparticles and their interaction with concanavalin A lectin. Beilstein Journal of Organic Chemistry, 2010, 6, 58.	2.2	18
66	Click Chemistry Grafting of Poly(ethylene glycol) Brushes to Alkyne-Functionalized Pseudobrushes. Langmuir, 2010, 26, 1304-1310.	3.5	37
67	Synthesis of Temperature Responsive Biohybrid Guar-Based Grafted Copolymers by Click Chemistry. Macromolecules, 2010, 43, 6843-6852.	4.8	31
68	Efficient Approaches for the Surface Modification of Platinum Nanoparticles via Click Chemistry. Macromolecules, 2010, 43, 9371-9375.	4.8	16
69	Bio-Sourced Networks from Thermal Polyaddition of a Starch-Derived α-Azide-ï‰-Alkyne AB Monomer with an A ₂ B ₂ Aliphatic Cross-linker. Macromolecules, 2010, 43, 5672-5678.	4.8	38
70	Structureâ^'Properties Relationship of Biosourced Stereocontrolled Polytriazoles from Click Chemistry Step Growth Polymerization of Diazide and Dialkyne Dianhydrohexitols. Biomacromolecules, 2010, 11, 2797-2803.	5.4	53
71	A Modular Approach to Functionalized and Expanded Crown Ether Based Macrocycles Using Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 6654-6658.	13.8	93
72	Functionalized random copolymers from versatile oneâ€pot click chemistry/ATRP tandems approaches. Journal of Polymer Science Part A, 2009, 47, 3803-3813.	2.3	37

ERIC DROCKENMULLER

#	Article	IF	CITATIONS
73	Design of crosslinked hybrid multilayer thin films from azido-functionalized polystyrenes and platinum nanoparticles. Soft Matter, 2009, 5, 586-592.	2.7	44
74	Influence of nitroxide structure on polystyrene brushes "graftedâ€from―silicon wafers. Journal of Polymer Science Part A, 2008, 46, 3367-3374.	2.3	32
75	Kinetic study of copper(I)â€catalyzed click chemistry stepâ€growth polymerization. Journal of Polymer Science Part A, 2008, 46, 5506-5517.	2.3	59
76	Polymer Brushes Grafted to "Passivated―Silicon Substrates Using Click Chemistry. Langmuir, 2008, 24, 2732-2739.	3.5	92
77	Development of Thermal and Photochemical Strategies for Thiolâ^'Ene Click Polymer Functionalization. Macromolecules, 2008, 41, 7063-7070.	4.8	430
78	Influence of Progressive Cross-Linking on Dewetting of Polystyrene Thin Films. Langmuir, 2008, 24, 1884-1890.	3.5	54
79	Surface Modification with Cross-Linked Random Copolymers:Â Minimum Effective Thickness. Macromolecules, 2007, 40, 4296-4300.	4.8	67
80	Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry. Journal of Polymer Science Part A, 2007, 45, 2835-2846.	2.3	113
81	Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers. Journal of the American Chemical Society, 2006, 128, 7622-7629.	13.7	292
82	Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography. Thin Solid Films, 2006, 513, 289-294.	1.8	72
83	A Generalized Approach to the Modification of Solid Surfaces. Science, 2005, 308, 236-239.	12.6	500
84	Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems. Journal of Polymer Science Part A, 2005, 43, 1028-1037.	2.3	82
85	Conformation of Intramolecularly Cross-Linked Polymer Nanoparticles on Solid Substrates. Nano Letters, 2005, 5, 1704-1709.	9.1	31
86	A Thermal and Manufacturable Approach to Stabilized Diblock Copolymer Templates. Macromolecules, 2005, 38, 7676-7683.	4.8	82
87	Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. Journal of the American Chemical Society, 2005, 127, 14942-14949.	13.7	322
88	Structurally Diverse Dendritic Libraries:Â A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules, 2005, 38, 3663-3678.	4.8	363
89	Living/Controlled Radical Polymerization of Ethyl andn-Butyl Acrylates at 90 °C Mediated by β-Sulfinyl Nitroxides:Â Influence of the Persistent Radical Stereochemistry. Macromolecules, 2004, 37, 2076-2083.	4.8	48
90	Macromolecules of controlled architecture. Journal of Materials Chemistry, 2003, 13, 2653-2660.	6.7	35

#	Article	IF	CITATIONS
91	Synthesis of a New Stable β-Sulfinyl Nitroxide and the Corresponding Alkoxyamine for Living/Controlled Radical Polymerization of Styrene:Â Kinetic and ESR Studies. Macromolecules, 2002, 35, 2461-2466.	4.8	61

92 Synthesis of Î²-sulfinyl nitroxides. Tetrahedron Letters, 2001, 42, 9011-9013.

1.4 8