Eric Drockenmuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Generalized Approach to the Modification of Solid Surfaces. Science, 2005, 308, 236-239.	6.0	500
2	Development of Thermal and Photochemical Strategies for Thiolâ^ Ene Click Polymer Functionalization. Macromolecules, 2008, 41, 7063-7070.	2.2	430
3	Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. Journal of the American Chemical Society, 2015, 137, 6078-6083.	6.6	407
4	Structurally Diverse Dendritic Libraries:Â A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules, 2005, 38, 3663-3678.	2.2	363
5	Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. Journal of the American Chemical Society, 2005, 127, 14942-14949.	6.6	322
6	Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers. Journal of the American Chemical Society, 2006, 128, 7622-7629.	6.6	292
7	Random heteropolymers preserve protein function in foreign environments. Science, 2018, 359, 1239-1243.	6.0	196
8	Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3â€Triazolium Crossâ€Links. Advanced Functional Materials, 2017, 27, 1703258.	7.8	153
9	Rheological Properties of Covalent Adaptable Networks with 1,2,3-Triazolium Cross-Links: The Missing Link between Vitrimers and Dissociative Networks. Macromolecules, 2020, 53, 1884-1900.	2.2	131
10	1,2,3-Triazolium-Based Poly(ionic liquid)s with Enhanced Ion Conducting Properties Obtained through a Click Chemistry Polyaddition Strategy. Chemistry of Materials, 2014, 26, 1720-1726.	3.2	121
11	Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry. Journal of Polymer Science Part A, 2007, 45, 2835-2846.	2.5	113
12	A Modular Approach to Functionalized and Expanded Crown Ether Based Macrocycles Using Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 6654-6658.	7.2	93
13	Precise Synthesis of Molecularly Defined Oligomers and Polymers by Orthogonal Iterative Divergent/Convergent Approaches. Macromolecular Rapid Communications, 2011, 32, 147-168.	2.0	93
14	Polymer Brushes Grafted to "Passivated―Silicon Substrates Using Click Chemistry. Langmuir, 2008, 24, 2732-2739.	1.6	92
15	Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems. Journal of Polymer Science Part A, 2005, 43, 1028-1037.	2.5	82
16	A Thermal and Manufacturable Approach to Stabilized Diblock Copolymer Templates. Macromolecules, 2005, 38, 7676-7683.	2.2	82
17	Mainâ€chain 1,2,3â€ŧriazoliumâ€based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. Journal of Polymer Science Part A, 2013, 51, 34-38.	2.5	79
18	Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography. Thin Solid Films, 2006, 513, 289-294.	0.8	72

#	Article	IF	CITATIONS
19	Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer. ACS Macro Letters, 2016, 5, 1283-1286.	2.3	70
20	Surface Modification with Cross-Linked Random Copolymers:Â Minimum Effective Thickness. Macromolecules, 2007, 40, 4296-4300.	2.2	67
21	Synthesis of a New Stable β-Sulfinyl Nitroxide and the Corresponding Alkoxyamine for Living/Controlled Radical Polymerization of Styrene:Â Kinetic and ESR Studies. Macromolecules, 2002, 35, 2461-2466.	2.2	61
22	Kinetic study of copper(I)â€catalyzed click chemistry stepâ€growth polymerization. Journal of Polymer Science Part A, 2008, 46, 5506-5517.	2.5	59
23	Influence of Progressive Cross-Linking on Dewetting of Polystyrene Thin Films. Langmuir, 2008, 24, 1884-1890.	1.6	54
24	Synthesis and polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles. Polymer Chemistry, 2012, 3, 1680-1692.	1.9	54
25	Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 121-126.	2.3	54
26	Structureâ^'Properties Relationship of Biosourced Stereocontrolled Polytriazoles from Click Chemistry Step Growth Polymerization of Diazide and Dialkyne Dianhydrohexitols. Biomacromolecules, 2010, 11, 2797-2803.	2.6	53
27	Enhancing Properties of Anionic Poly(ionic liquid)s with 1,2,3-Triazolium Counter Cations. ACS Macro Letters, 2014, 3, 658-662.	2.3	52
28	Living/Controlled Radical Polymerization of Ethyl andn-Butyl Acrylates at 90 °C Mediated by β-Sulfinyl Nitroxides:Â Influence of the Persistent Radical Stereochemistry. Macromolecules, 2004, 37, 2076-2083.	2.2	48
29	Accelerated Solvent―and Catalystâ€Free Synthesis of 1,2,3â€Triazoliumâ€Based Poly(Ionic Liquid)s. Macromolecular Rapid Communications, 2014, 35, 794-800.	2.0	46
30	Biobased vinyl levulinate as styrene replacement for unsaturated polyester resins. Journal of Polymer Science Part A, 2014, 52, 3356-3364.	2.5	46
31	Design of crosslinked hybrid multilayer thin films from azido-functionalized polystyrenes and platinum nanoparticles. Soft Matter, 2009, 5, 586-592.	1.2	44
32	Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polymer Chemistry, 2015, 6, 4299-4308.	1.9	44
33	Solving the loss of orthogonality during the polyaddition of αâ€azideâ€ï‰â€alkyne monomers catalyzed by Cu(PPh ₃) ₃ Br: Application to the synthesis of highâ€molar mass polytriazoles. Journal of Polymer Science Part A, 2010, 48, 2470-2476.	2.5	43
34	Poly(ethylene glycol) brushes grafted to silicon substrates by click chemistry: influence of PEG chain length, concentration in the grafting solution and reaction time. Polymer Chemistry, 2011, 2, 348-354.	1.9	43
35	Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with Hydrogenâ€Bonding Junctions. Angewandte Chemie - International Edition, 2015, 54, 11117-11121.	7.2	43
36	Triethylene glycol-based poly(1,2,3-triazolium acrylate)s with enhanced ionic conductivity. Polymer Chemistry, 2015, 6, 3521-3528.	1.9	40

3

#	Article	IF	CITATIONS
37	Bio-Sourced Networks from Thermal Polyaddition of a Starch-Derived α-Azide-ï‰-Alkyne AB Monomer with an A ₂ B ₂ Aliphatic Cross-linker. Macromolecules, 2010, 43, 5672-5678.	2.2	38
38	1,2,3â€Triazoliumâ€Based Poly(ionic liquid)s Obtained Through Click Chemistry Polyaddition. Macromolecular Chemistry and Physics, 2014, 215, 2229-2236.	1.1	38
39	Functionalized random copolymers from versatile oneâ€pot click chemistry/ATRP tandems approaches. Journal of Polymer Science Part A, 2009, 47, 3803-3813.	2.5	37
40	Click Chemistry Grafting of Poly(ethylene glycol) Brushes to Alkyne-Functionalized Pseudobrushes. Langmuir, 2010, 26, 1304-1310.	1.6	37
41	1,2,3-Triazolium-based poly(acrylate ionic liquid)s. Polymer, 2014, 55, 3314-3319.	1.8	37
42	Synthesis of thermosensitive guarâ€based hydrogels with tunable physicoâ€chemical properties by click chemistry. Journal of Polymer Science Part A, 2010, 48, 2733-2742.	2.5	36
43	Macromolecules of controlled architecture. Journal of Materials Chemistry, 2003, 13, 2653-2660.	6.7	35
44	(Co)Polymerization of vinyl levulinate by cobalt-mediated radical polymerization and functionalization by ketoxime click chemistry. Polymer Chemistry, 2014, 5, 2973-2979.	1.9	35
45	Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. European Polymer Journal, 2016, 84, 65-76.	2.6	35
46	RAFT Polymerization of Bio-Based 1-Vinyl-4-dianhydrohexitol-1,2,3-triazole Stereoisomers Obtained via Click Chemistry. Biomacromolecules, 2012, 13, 4138-4145.	2.6	34
47	Tuning the Viscosity Profiles of High- <i>T</i> _g Poly(1,2,3-triazolium) Covalent Adaptable Networks by the Chemical Structure of the N-Substituents. Macromolecules, 2021, 54, 3281-3292.	2.2	33
48	Influence of nitroxide structure on polystyrene brushes "graftedâ€from―silicon wafers. Journal of Polymer Science Part A, 2008, 46, 3367-3374.	2.5	32
49	Versatile click functionalization of poly(1,2,3-triazolium ionic liquid)s. European Polymer Journal, 2015, 62, 331-337.	2.6	32
50	Conformation of Intramolecularly Cross-Linked Polymer Nanoparticles on Solid Substrates. Nano Letters, 2005, 5, 1704-1709.	4.5	31
51	Synthesis of Temperature Responsive Biohybrid Guar-Based Grafted Copolymers by Click Chemistry. Macromolecules, 2010, 43, 6843-6852.	2.2	31
52	Poly(ethylene) brushes grafted to silicon substrates. Polymer Chemistry, 2012, 3, 1838-1845.	1.9	31
53	1,2,3â€Triazoliumâ€Based Epoxy–Amine Networks: Ion onducting Polymer Electrolytes. Macromolecular Rapid Communications, 2016, 37, 1168-1174.	2.0	31
54	UV-Patterning of Ion Conducting Negative Tone Photoresists Using Azide-Functionalized Poly(Ionic) Tj ETQq0 0	0 rgBT /0 [,]	verlock 10 Tf 5

#	Article	IF	CITATIONS
55	Friction of Polymers: from PDMS Melts to PDMS Elastomers. ACS Macro Letters, 2018, 7, 112-115.	2.3	27
56	Toward tunable amphiphilic copolymers via CuAAC click chemistry of oligocaprolactones onto starch backbone. Carbohydrate Polymers, 2013, 96, 259-269.	5.1	23
57	Expanding the structural variety of poly(1,2,3-triazolium)s obtained by simultaneous 1,3-dipolar Huisgen polyaddition and N-alkylation. Polymer, 2015, 79, 309-315.	1.8	22
58	Direct Molecular Evidence of the Origin of Slip of Polymer Melts on Grafted Brushes. Macromolecules, 2016, 49, 2348-2353.	2.2	22
59	Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polymer Chemistry, 2017, 8, 910-917.	1.9	22
60	Probing the effect of anion structure on the physical properties of cationic 1,2,3â€ŧriazoliumâ€based poly(ionic liquid)s. Journal of Polymer Science Part A, 2016, 54, 2191-2199.	2.5	21
61	Photoâ€crosslinked fluorinated thin films from azidoâ€functionalized random copolymers. Journal of Polymer Science Part A, 2010, 48, 3888-3895.	2.5	20
62	Quantitative Analysis of Interdigitation Kinetics between a Polymer Melt and a Polymer Brush. Macromolecules, 2013, 46, 6955-6962.	2.2	19
63	New amphiphilic glycopolymers by click functionalization of random copolymers – application to the colloidal stabilisation of polymer nanoparticles and their interaction with concanavalin A lectin. Beilstein Journal of Organic Chemistry, 2010, 6, 58.	1.3	18
64	Crosslinked PDMS elastomers and coatings from the thermal curing of vinylâ€functionalized PDMS and a diazide aliphatic crosslinker. Journal of Polymer Science Part A, 2012, 50, 98-107.	2.5	18
65	1,4:3,6-Dianhydrohexitols: Original platform for the design of biobased polymers using robust, efficient, and orthogonal chemistry. Pure and Applied Chemistry, 2012, 85, 511-520.	0.9	17
66	Biosourced 1,2,3-triazolium ionic liquids derived from isosorbide. New Journal of Chemistry, 2016, 40, 740-747.	1.4	17
67	Partially Biosourced Poly(1,2,3-triazolium)-Based Diblock Copolymers Derived from Levulinic Acid. Macromolecules, 2018, 51, 5820-5830.	2.2	17
68	Efficient Approaches for the Surface Modification of Platinum Nanoparticles via Click Chemistry. Macromolecules, 2010, 43, 9371-9375.	2.2	16
69	1,2,3-Triazolium-based linear ionic polyurethanes. Polymer Chemistry, 2017, 8, 5148-5156.	1.9	14
70	Comparison of the Slip of a PDMS Melt on Weakly Adsorbing Surfaces Measured by a New Photobleaching-Based Technique. Macromolecules, 2017, 50, 5592-5598.	2.2	13
71	Temperature-Controlled Slip of Polymer Melts on Ideal Substrates. Physical Review Letters, 2018, 121, 177802.	2.9	12
72	Structurally Related Scaling Behavior in Ionic Systems. Journal of Physical Chemistry B, 2020, 124, 1240-1244.	1.2	12

#	Article	IF	CITATIONS
73	Reusable Enzymatic Fiber Mats for Neurotoxin Remediation in Water. ACS Applied Materials & Interfaces, 2018, 10, 44216-44220.	4.0	11
74	Mainâ€chain poly(1,2,3â€ŧriazolium hydroxide)s obtained through AA+BB click polyaddition as anion exchange membranes. Polymer International, 2019, 68, 1591-1598.	1.6	11
75	Fast secondary dynamics for enhanced charge transport in polymerized ionic liquids. Physical Review E, 2020, 101, 032606.	0.8	10
76	Comparison of poly(ethylene glycol)-based networks obtained by cationic ring opening polymerization of neutral and 1,2,3-triazolium diepoxy monomers. Polymer Chemistry, 2020, 11, 1894-1905.	1.9	9
77	Synthesis of β-sulfinyl nitroxides. Tetrahedron Letters, 2001, 42, 9011-9013.	0.7	8
78	Photochemical isomerization of norbornadieneâ€containing polytriazoles obtained by click chemistry polyaddition. Journal of Polymer Science Part A, 2014, 52, 223-231.	2.5	8
79	A 1,2,3-triazolate lithium salt with ionic liquid properties at room temperature. Chemical Communications, 2018, 54, 9035-9038.	2.2	8
80	Access to Thermodynamic and Viscoelastic Properties of Poly(ionic liquid)s Using High-Pressure Conductivity Measurements. ACS Macro Letters, 2019, 8, 996-1001.	2.3	8
81	Effects of repeat unit charge density on the physical and electrochemical properties of novel heterocationic poly(ionic liquid)s. New Journal of Chemistry, 2021, 45, 53-65.	1.4	8
82	Synthesis of wellâ€defined poly(dimethylsiloxane) telechelics having nitrobenzoxadiazole fluorescent chainâ€ends via thiolâ€ene coupling. Journal of Polymer Science Part A, 2012, 50, 1827-1833.	2.5	7
83	Cross-linked polymer microparticles with tunable surface properties by the combination of suspension free radical copolymerization and Click chemistry. Journal of Colloid and Interface Science, 2022, 607, 1687-1698.	5.0	7
84	Improving the control of styrene polymerization at 60 °C using a dialkylated αâ€hydrogenated nitroxide. Journal of Polymer Science Part A, 2012, 50, 3750-3757.	2.5	6
85	Viscoelasticity-Induced Onset of Slip at the Wall for Polymer Fluids. ACS Macro Letters, 2020, 9, 924-928.	2.3	6
86	Synthesis and characterization of novel biosourced building blocks from isosorbide. Designed Monomers and Polymers, 2016, 19, 108-118.	0.7	5
87	Exchange Process in the Dielectric Loss of Molecular and Macromolecular Ionic Conductors in the Interfacial Layers Formed by Electrode Polarization Effects. Journal of Physical Chemistry B, 2019, 123, 8532-8542.	1.2	5
88	Studies on ion dynamics of polymerized ionic liquids through the free volume theory. Polymer, 2021, 212, 123286.	1.8	5
89	Photoresponsive polyamides containing pentamethylated norbornadiene moieties: Synthesis and photochemical properties under sunlight irradiation. Journal of Polymer Science Part A, 2013, 51, 4650-4656.	2.5	4
90	Multiscale Structure of Poly(ionic liquid)s in Bulk and Solutions by Small-Angle Neutron Scattering. Macromolecules, 2022, 55, 4111-4118.	2.2	4

#	Article	IF	CITATIONS
91	Synthesis and Structure/Properties Correlations of Fluorinated Poly(1,2,3-triazolium)s. Chemistry Africa, 2020, 3, 759-768.	1.2	2
92	Slip and Friction Mechanisms at Polymer Semi-Dilute Solutions/Solid Interfaces. Macromolecules, 2021, 54, 4910-4917.	2.2	1