List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous versus discrete data analysis for gait evaluation of horses with induced bilateral hindlimb lameness. Equine Veterinary Journal, 2022, 54, 626-633.	0.9	5
2	In vivo joint synovial fluid disposition of a novel sustainedâ€release formulation of diclofenac and hyaluronic acid in horses. Journal of Veterinary Pharmacology and Therapeutics, 2022, 45, 167-176.	0.6	1
3	Modelling fore- and hindlimb peak vertical force differences in trotting horses using upper body kinematic asymmetry variables. Journal of Biomechanics, 2022, 137, 111097.	0.9	3
4	Asymmetries of horses walking and trotting on treadmill with and without rider. Equine Veterinary Journal, 2021, 53, 157-166.	0.9	2
5	Adaptation strategies of horses with induced forelimb lameness walking on a treadmill. Equine Veterinary Journal, 2021, 53, 600-611.	0.9	12
6	Nonâ€banked curved tracks influence movement symmetry in twoâ€yearâ€old Standardbred trotters. Equine Veterinary Journal, 2021, 53, 1178-1187.	0.9	4
7	Objectively measured movement asymmetry in yearling Standardbred trotters. Equine Veterinary Journal, 2021, 53, 590-599.	0.9	12
8	A QTL for conformation of back and croup influences lateral gait quality in Icelandic horses. BMC Genomics, 2021, 22, 267.	1.2	7
9	Towards Machine Recognition of Facial Expressions of Pain in Horses. Animals, 2021, 11, 1643.	1.0	30
10	Effect of transportation and social isolation on facial expressions of healthy horses. PLoS ONE, 2021, 16, e0241532.	1.1	16
11	Kinematic gait characteristics of straight line walk in clinically sound dairy cows. PLoS ONE, 2021, 16, e0253479.	1.1	1
12	Effect of Speed and Surface Type on Individual Rein and Combined Left–Right Circle Movement Asymmetry in Horses on the Lunge. Frontiers in Veterinary Science, 2021, 8, 692031.	0.9	5
13	Effects of horse housing on musculoskeletal system post-exercise recovery. Comparative Exercise Physiology, 2021, 17, 421-428.	0.3	1
14	Comparison of visual lameness scores to gait asymmetry in racing Thoroughbreds during trot inâ€hand. Equine Veterinary Education, 2020, 32, 191-198.	0.3	19
15	Withers vertical movement asymmetry in dressage horses walking in different head-neck positions with and without riders. Journal of Veterinary Behavior: Clinical Applications and Research, 2020, 36, 72-83.	0.5	5
16	Increased Rider Weight Did Not Induce Changes in Behavior and Physiological Parameters in Horses. Animals, 2020, 10, 95.	1.0	9
17	Quantitative lameness assessment in the horse based on upper body movement symmetry: The effect of different filtering techniques on the quantification of motion symmetry. Biomedical Signal Processing and Control, 2020, 57, 101674.	3.5	22
18	Identification of Body Behaviors and Facial Expressions Associated with Induced Orthopedic Pain in Four Fourine Pain Scales, Animals, 2020, 10, 2155,	1.0	18

π	ARTICLE	IF	CITATIONS
19	Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning. Scientific Reports, 2020, 10, 17785.	1.6	19
20	Equestrian and biomechanical perspectives on laterality in the horse. Comparative Exercise Physiology, 2020, 16, 35-45.	0.3	20
21	Automatic detection of break-over phase onset in horses using hoof-mounted inertial measurement unit sensors. PLoS ONE, 2020, 15, e0233649.	1.1	7
22	Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. PLoS ONE, 2020, 15, e0233266.	1.1	6
23	Title is missing!. , 2020, 15, e0233649.		0
24	Title is missing!. , 2020, 15, e0233649.		0
25	Title is missing!. , 2020, 15, e0233649.		0
26	Title is missing!. , 2020, 15, e0233649.		0
27	Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. , 2020, 15, e0233266.		0
28	Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. , 2020, 15, e0233266.		0
29	Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. , 2020, 15, e0233266.		0
30	Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. , 2020, 15, e0233266.		0
31	Disposition and effect of intra-articularly administered dexamethasone on lipopolysaccharide induced equine synovitis. Acta Veterinaria Scandinavica, 2019, 61, 28.	0.5	8
32	Effect of meloxicam treatment on movement asymmetry in riding horses in training. PLoS ONE, 2019, 14, e0221117.	1.1	8
33	Effects of Horse Housing System on Energy Balance during Post-Exercise Recovery. Animals, 2019, 9, 976.	1.0	7
34	On the brink of daily clinical application of objective gait analysis: What evidence do we have so far from studies using an induced lameness model?. Veterinary Journal, 2018, 234, 11-23.	0.6	46
35	Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot. Equine Veterinary Journal, 2018, 50, 818-824.	0.9	47
36	Head, withers and pelvic movement asymmetry and their relative timing in trot in racing Thoroughbreds in training. Equine Veterinary Journal, 2018, 50, 117-124.	0.9	29

#	Article	IF	CITATIONS
37	Quantification of the effect of instrumentation error in objective gait assessment in the horse on hindlimb symmetry parameters. Equine Veterinary Journal, 2018, 50, 370-376.	0.9	15
38	Head and pelvic vertical displacement in dogs with induced swinging limb lameness: an experimental study. Acta Veterinaria Scandinavica, 2018, 60, 81.	0.5	1
39	Modelling rein tension during riding sessions using the generalised additive modelling technique. Comparative Exercise Physiology, 2018, 14, 209-221.	0.3	5
40	Biomechanical findings in horses showing asymmetrical vertical excursions of the withers at walk. PLoS ONE, 2018, 13, e0204548.	1.1	19
41	Selection on the Colombian paso horse's gaits has produced kinematic differences partly explained by the DMRT3 gene. PLoS ONE, 2018, 13, e0202584.	1.1	15
42	Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot. PLoS ONE, 2018, 13, e0195341.	1.1	27
43	Effect of a unilateral hind limb orthotic lift on upper body movement symmetry in the trotting horse. PLoS ONE, 2018, 13, e0199447.	1.1	6
44	What is lameness and what (or who) is the gold standard to detect it?. Equine Veterinary Journal, 2018, 50, 549-551.	0.9	16
45	Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill. PLoS ONE, 2018, 13, e0200534.	1.1	6
46	Effect of different head and neck positions on kinematics of elite dressage horses ridden at walk on treadmill. Comparative Exercise Physiology, 2018, 14, 69-78.	0.3	8
47	Inertial sensor-based system for lameness detection in trotting dogs with induced lameness. Veterinary Journal, 2017, 222, 54-59.	0.6	13
48	Do we have to redefine lameness in the era of quantitative gait analysis?. Equine Veterinary Journal, 2017, 49, 567-569.	0.9	47
49	Vertical head and pelvic movement symmetry at the trot in dogs with induced supporting limb lameness. Veterinary Journal, 2017, 229, 13-18.	0.6	7
50	Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner. PLoS ONE, 2017, 12, e0176253.	1.1	59
51	Agreement between two inertial sensor gait analysis systems for lameness examinations in horses. Equine Veterinary Education, 2016, 28, 203-208.	0.3	37
52	Lungeing on hard and soft surfaces: Movement symmetry of trotting horses considered sound by their owners. Equine Veterinary Journal, 2016, 48, 83-89.	0.9	42
53	Quantitative assessment of gait parameters in horses: Useful for aiding clinical decision making?. Equine Veterinary Education, 2016, 28, 209-215.	0.3	27
54	Head and pelvic movement asymmetry during lungeing in horses with symmetrical movement on the straight. Equine Veterinary Journal, 2016, 48, 315-320.	0.9	54

#	Article	IF	CITATIONS
55	Rater agreement of visual lameness assessment in horses during lungeing. Equine Veterinary Journal, 2016, 48, 78-82.	0.9	58
56	Maximum and minimum peaks in rein tension within canter strides. Journal of Veterinary Behavior: Clinical Applications and Research, 2016, 13, 63-71.	0.5	17
57	Stride-related rein tension patterns in walk and trot in the ridden horse. Acta Veterinaria Scandinavica, 2015, 57, 89.	0.5	16
58	Rein tension during canter. Comparative Exercise Physiology, 2015, 11, 107-118.	0.3	11
59	A snapshot of the training schedule for 8 professional riders riding dressage. Comparative Exercise Physiology, 2015, 11, 35-45.	0.3	10
60	Differences in rider movement pattern between different degrees of collection at the trot in high-level dressage horses ridden on a treadmill. Human Movement Science, 2015, 41, 1-8.	0.6	30
61	Rein tension in 8 professional riders during regular training sessions. Journal of Veterinary Behavior: Clinical Applications and Research, 2015, 10, 419-426.	0.5	22
62	Subjective Evaluation of Lameness in Horses During Lungeing. Equine Veterinary Journal, 2014, 46, 41-41.	0.9	3
63	Skin Displacement in the Equine Neck. Equine Veterinary Journal, 2014, 46, 36-36.	0.9	3
64	Evaluation of skin displacement in the equine neck. Comparative Exercise Physiology, 2014, 10, 181-186.	0.3	5
65	Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness. Veterinary Journal, 2013, 198, e39-e45.	0.6	52
66	The influence of head and neck position on kinematics of the back in riding horses at the walk and trot. Equine Veterinary Journal, 2010, 37, 7-11.	0.9	65
67	Kinematics of saddle and rider in highâ€ l evel dressage horses performing collected walk on a treadmill. Equine Veterinary Journal, 2010, 42, 340-345.	0.9	34
68	The effect of different head and neck positions on the caudal back and hindlimb kinematics in the elite dressage horse at trot. Equine Veterinary Journal, 2009, 41, 274-279.	0.9	68
69	Basic kinematics of the saddle and rider in highâ€level dressage horses trotting on a treadmill. Equine Veterinary Journal, 2009, 41, 280-284.	0.9	54
70	Kinetics and kinematics of the horse comparing left and right rising trot. Equine Veterinary Journal, 2009, 41, 292-296.	0.9	35
71	Back kinematics of healthy trotting horses during treadmill versus over ground locomotion. Equine Veterinary Journal, 2009, 41, 297-300.	0.9	29
72	The effect of head and neck position on the thoracolumbar kinematics in the unridden horse. Equine Veterinary Journal, 2006, 38, 445-451.	0.9	75

#	Article	IF	CITATIONS
73	The effect of weighted boots on the movement of the back in the asymptomatic riding horse. Equine and Comparative Exercise Physiology, 2006, 3, 13-18.	0.4	10