Dana M Cairns

List of Publications by Citations

Source: https://exaly.com/author-pdf/7456005/dana-m-cairns-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31 677 15 25 g-index

37 920 7.2 4.26 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
31	A 3D human brain-like tissue model of herpes-induced Alzheimerls disease. <i>Science Advances</i> , 2020 , 6, eaay8828	14.3	90
30	Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. <i>ACS Applied Materials & Discourt Action Materials & Discourt </i>	9.5	69
29	Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. <i>Stem Cell Reports</i> , 2016 , 7, 557-570	8	49
28	A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. <i>Developmental Biology</i> , 2008 , 323, 152-65	3.1	38
27	3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. <i>Biomaterials</i> , 2019 , 198, 194-203	15.6	36
26	Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. <i>PLoS ONE</i> , 2012 , 7, e39642	3.7	35
25	The influence of scaffold material on chondrocytes under inflammatory conditions. <i>Acta Biomaterialia</i> , 2013 , 9, 6563-75	10.8	34
24	Somitic disruption of GNAS in chick embryos mimics progressive osseous heteroplasia. <i>Journal of Clinical Investigation</i> , 2013 , 123, 3624-33	15.9	31
23	Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays. <i>Tissue Engineering - Part C: Methods</i> , 2018 , 24, 346-359	2.9	29
22	The role of muscle cells in regulating cartilage matrix production. <i>Journal of Orthopaedic Research</i> , 2010 , 28, 529-36	3.8	28
21	Multifunctional Bioreactor System for Human Intestine Tissues. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 231-239	5.5	26
20	Niclosamide rescues microcephaly in a humanized model of Zika infection using human induced neural stem cells. <i>Biology Open</i> , 2018 , 7,	2.2	24
19	Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. <i>Scientific Reports</i> , 2019 , 9, 17874	4.9	24
18	Corneal pain and experimental model development. <i>Progress in Retinal and Eye Research</i> , 2019 , 71, 88-1	123 0.5	20
17	Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. <i>Biomaterials</i> , 2021 , 276, 120995	15.6	17
16	Smart Material Hydrogel Transfer Devices Fabricated with Stimuli-Responsive Silk-Elastin-Like Proteins. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000266	10.1	15
15	Muscle cells enhance resistance to pro-inflammatory cytokine-induced cartilage destruction. Biochemical and Biophysical Research Communications, 2010 , 392, 22-8	3.4	15

LIST OF PUBLICATIONS

14	Photo-cross-linkable, insulating silk fibroin for bioelectronics with enhanced cell affinity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15482-15489) ^{11.5}	14
13	Human Corneal Tissue Model for Nociceptive Assessments. <i>Advanced Healthcare Materials</i> , 2018 , 7, e18	0 <u>Q</u> 488	14
12	Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue. <i>Advanced Functional Materials</i> , 2020 , 30, 2000543	15.6	12
11	Human Skin Equivalents Demonstrate Need for Neuro-Immuno-Cutaneous System. <i>Advanced Biology</i> , 2019 , 3, e1800283	3.5	10
10	Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. <i>Scientific Reports</i> , 2018 , 8, 17294	14.9	10
9	Scaffold structure and fabrication method affect proinflammatory milieu in three-dimensional-cultured chondrocytes. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 534-44	5.4	8
8	Bioengineered in vitro enteric nervous system. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2019 , 13, 1712-1723	4.4	8
7	Ivermectin Promotes Peripheral Nerve Regeneration during Wound Healing. ACS Omega, 2018, 3, 12392	2319240	2 6
6	Hyperosmolar potassium inhibits myofibroblast conversion and reduces scar tissue formation. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5327-5336	5.5	5
5	Assembly and Application of a Three-Dimensional Human Corneal Tissue Model. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2019 , 81, e84	1	4
4	Efficacy of Niclosamide vs Placebo in SARS-CoV-2 Respiratory Viral Clearance, Viral Shedding, and Duration of Symptoms Among Patients With Mild to Moderate COVID-19: A Phase 2 Randomized Clinical Trial <i>JAMA Network Open</i> , 2022 , 5, e2144942	10.4	3
3	Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix		1
2	Induction of Irritation and Inflammation in a 3D Innervated Tissue Model of the Human Cornea. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 6886-6895	5.5	О
1	Learning and synaptic plasticity in 3D bioengineered neural tissues. <i>Neuroscience Letters</i> , 2021 , 750, 135	5339	0