William M Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	28.9	543
2	Phase Transitions in Biological Systems with Many Components. Biophysical Journal, 2017, 112, 683-691.	0.5	121
3	Rational design of self-assembly pathways for complex multicomponent structures. Proceedings of the United States of America, 2015, 112, 6313-6318.	7.1	97
4	Evidence of evolutionary selection for cotranslational folding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11434-11439.	7.1	90
5	Self-Assembly of Structures with Addressable Complexity. Journal of the American Chemical Society, 2016, 138, 2457-2467.	13.7	73
6	Accessibility of the Shine-Dalgarno Sequence Dictates N-Terminal Codon Bias in E.Âcoli. Molecular Cell, 2018, 70, 894-905.e5.	9.7	58
7	Predicting phase behavior in multicomponent mixtures. Journal of Chemical Physics, 2013, 139, 024108.	3.0	46
8	Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1485-1495.	7.1	44
9	Self-Assembly of Biomolecular Condensates with Shared Components. Physical Review Letters, 2021, 126, 258101.	7.8	43
10	Communication: Theoretical prediction of free-energy landscapes for complex self-assembly. Journal of Chemical Physics, 2015, 142, 021101.	3.0	34
11	Phase separation in solutions with specific and nonspecific interactions. Journal of Chemical Physics, 2014, 140, 204109.	3.0	29
12	Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	28
13	Structure-Based Prediction of Protein-Folding Transition Paths. Biophysical Journal, 2016, 111, 925-936.	0.5	27
14	Direct observation and rational design of nucleation behavior in addressable self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5877-E5886.	7.1	22
15	Effect of Protein Structure on Evolution of Cotranslational Folding. Biophysical Journal, 2020, 119, 1123-1134.	0.5	19
16	Self-assembly protocol design for periodic multicomponent structures. Soft Matter, 2015, 11, 8930-8938.	2.7	17
17	Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape. Journal of Physical Chemistry B, 2018, 122, 11126-11136.	2.6	13
18	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. PLoS Computational Biology, 2020, 16, e1008323.	3.2	11

#	Article	IF	CITATIONS
19	Oligomers of Heat-Shock Proteins: Structures That Don't Imply Function. PLoS Computational Biology, 2016, 12, e1004756.	3.2	9
20	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. , 2020, 16, e1008323.		0
21	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. , 2020, 16, e1008323.		0
22	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. , 2020, 16, e1008323.		0
23	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. , 2020, 16, e1008323.		0
24	Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. , 2020, 16, e1008323.		0