
Craig R Mcclain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology - Progress Series, 2006, 317, 1-8.	0.9	409
2	Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 24-27.	3.3	260
3	A Sourceâ€Sink Hypothesis for Abyssal Biodiversity. American Naturalist, 2005, 165, 163-178.	1.0	227
4	Extinctions in ancient and modern seas. Trends in Ecology and Evolution, 2012, 27, 608-617.	4.2	221
5	Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology, 2010, 91, 964-976.	1.5	197
6	The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3533-3546.	1.2	185
7	Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 2020, 4, 181-192.	3.4	142
8	Energetics of life on the deep seafloor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15366-15371.	3.3	133
9	The Evolution of Energetic Scaling across the Vertebrate Tree of Life. American Naturalist, 2017, 190, 185-199.	1.0	114
10	Seamounts: identity crisis or split personality?. Journal of Biogeography, 2007, 34, 2001-2008.	1.4	113
11	Paleontological baselines for evaluating extinction risk in the modern oceans. Science, 2015, 348, 567-570.	6.0	111
12	The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthesis Research, 2011, 107, 37-57.	1.6	107
13	Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ, 2015, 3, e715.	0.9	104
14	Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount. PLoS ONE, 2009, 4, e4141.	1.1	97
15	Energetic tradeoffs control the size distribution of aquatic mammals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4194-4199.	3.3	89
16	On some hypotheses of diversity of animal life at great depths on the sea floor. Marine Ecology, 2015, 36, 849-872.	0.4	84
17	The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1350-1360.	0.6	79
18	Evolution of the indoor biome. Trends in Ecology and Evolution, 2015, 30, 223-232.	4.2	75

CRAIG R MCCLAIN

#	Article	IF	CITATIONS
19	Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Marine Ecology, 2010, 31, 14-25.	0.4	72
20	Species–energy relationships in deep-sea molluscs. Biology Letters, 2011, 7, 718-722.	1.0	71
21	The island rule and the evolution of body size in the deep sea. Journal of Biogeography, 2006, 33, 1578-1584.	1.4	65
22	Body Size Evolution Across the Geozoic. Annual Review of Earth and Planetary Sciences, 2016, 44, 523-553.	4.6	64
23	Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology, 2011, 37, 252-269.	1.3	61
24	Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology and Biogeography, 2004, 13, 327-334.	2.7	59
25	Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1993-2002.	1.2	54
26	Mid-domain models as predictors of species diversity patterns: bathymetric diversity gradients in the deep sea. Oikos, 2005, 109, 555-566.	1.2	53
27	Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133122.	1.2	53
28	Beta-diversity on deep-sea wood falls reflects gradients in energy availability. Biology Letters, 2014, 10, 20140129.	1.0	52
29	Practices and promises of Facebook for science outreach: Becoming a "Nerd of Trust― PLoS Biology, 2017, 15, e2002020.	2.6	48
30	MORPHOLOGICAL DISPARITY AS A BIODIVERSITY METRIC IN LOWER BATHYALAND ABYSSAL GASTROPOD ASSEMBLAGES. Evolution; International Journal of Organic Evolution, 2004, 58, 338-348.	1.1	45
31	Toward a Conceptual Understanding of β-Diversity in the Deep-Sea Benthos. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 623-642.	3.8	45
32	A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program. Frontiers in Marine Science, 2020, 7, .	1.2	45
33	Ten Simple Rules for Effective Online Outreach. PLoS Computational Biology, 2015, 11, e1003906.	1.5	42
34	Biodiversity and body size are linked across metazoans. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2209-2215.	1.2	35
35	Assemblage structure is related to slope and depth on a deep offshore <scp>P</scp> acific seamount chain. Marine Ecology, 2015, 36, 210-220.	0.4	35
36	Contrasting patterns of α- and β-diversity in deep-sea bivalves of the eastern and western North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 157-164.	0.6	33

CRAIG R MCCLAIN

#	Article	IF	CITATIONS
37	BATHYMETRIC PATTERNS OF MORPHOLOGICAL DISPARITY IN DEEP-SEA GASTROPODS FROM THE WESTERN NORTH ATLANTIC BASIN. Evolution; International Journal of Organic Evolution, 2005, 59, 1492-1499.	1.1	32
38	Science Incubators: Synthesis Centers and Their Role in the Research Ecosystem. PLoS Biology, 2013, 11, e1001468.	2.6	32
39	Marine extinction risk shaped by trait–environment interactions over 500Âmillion years. Global Change Biology, 2015, 21, 3595-3607.	4.2	31
40	Local-scale faunal turnover on the deep Pacific seafloor. Marine Ecology - Progress Series, 2011, 422, 193-200.	0.9	30
41	Unravelling the determinants of insular body size shifts. Biology Letters, 2013, 9, 20120989.	1.0	28
42	Ichthyofauna on three seamounts off southern and central California, USA. Marine Ecology - Progress Series, 2009, 389, 223-232.	0.9	28
43	INCREASED ENERGY PROMOTES SIZE-BASED NICHE AVAILABILITY IN MARINE MOLLUSKS. Evolution; International Journal of Organic Evolution, 2012, 66, 2204-2215.	1.1	27
44	Multiple Processes Generate Productivity-Diversity Relationships in Experimental Wood-Fall Communities. Ecology, 2015, 97, 885-98.	1.5	26
45	Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna. Royal Society Open Science, 2019, 6, 191164.	1.1	26
46	Patterns in Deep-Sea Macroecology. , 2009, , 65-100.		26
47	Challenges in the application of geometric constraint models. Global Ecology and Biogeography, 2007, 16, 257-264.	2.7	25
48	Nestedness and species replacement along bathymetric gradients in the deep sea reflect productivity: a test with polychaete assemblages in the oligotrophic northâ€west Gulf of Mexico. Journal of Biogeography, 2017, 44, 548-555.	1.4	23
49	Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology, 2019, 45, 405-420.	1.3	22
50	A Synthesis of Deep Benthic Faunal Impacts and Resilience Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science, 2020, 7, .	1.2	17
51	The commonness of rarity in a deepâ€sea taxon. Oikos, 2021, 130, 863-878.	1.2	16
52	Digital Environmentalism: Tools and Strategies for the Evolving Online Ecosystem. , 2012, , 364-372.		14
53	Abundance–occupancy relationships in deep sea wood fall communities. Ecography, 2017, 40, 1339-1347.	2.1	13
54	Visible name changes promote inequity for transgender researchers. PLoS Biology, 2021, 19, e3001104.	2.6	13

CRAIG R MCCLAIN

#	Article	IF	CITATIONS
55	Increased energy differentially increases richness and abundance of optimal body sizes in deepâ€sea wood falls. Ecology, 2018, 99, 184-195.	1.5	12
56	Metabolic Niches and Biodiversity: A Test Case in the Deep Sea Benthos. Frontiers in Marine Science, 2020, 7, .	1.2	12
57	A critical evaluation of science outreach via social media: its role and impact on scientists. F1000Research, 2014, 3, 300.	0.8	12
58	Likes, comments, and shares of marine organism imagery on Facebook. PeerJ, 2019, 7, e6795.	0.9	12
59	Energetic increases lead to niche packing in deep-sea wood falls. Biology Letters, 2018, 14, 20180294.	1.0	11
60	Is biodiversity energy-limited or unbounded? A test in fossil and modern bivalves. Paleobiology, 2018, 44, 385-401.	1.3	9
61	Alligators in the abyss: The first experimental reptilian food fall in the deep ocean. PLoS ONE, 2019, 14, e0225345.	1.1	9
62	MOCNESS estimates of the size and abundance of a pelagic gonostomatid fish Cyclothone pallida off the Bahamas. Journal of the Marine Biological Association of the United Kingdom, 2001, 81, 869-871.	0.4	8
63	Does energy availability predict gastropod reproductive strategies?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140400.	1.2	8
64	A Lack of Attribution: Closing the Citation Gap Through a Reform of Citation and Indexing Practices. Taxon, 2012, 61, 1349-1351.	0.4	7
65	THE GEOZOIC SUPEREON. Palaios, 2011, 26, 251-255.	0.6	5
66	Traitâ€based diversity of deepâ€sea benthic megafauna communities near the Deepwater Horizon oil spill site. Marine Ecology, 2020, 41, e12611.	0.4	4
67	An Empire Lacking Food. American Scientist, 2010, 98, 470.	0.1	4
68	Bathymetric patterns of morphological disparity in deep-sea gastropods from the western North Atlantic basin. Evolution; International Journal of Organic Evolution, 2005, 59, 1492-9.	1.1	4
69	Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. Astrobiology, 2022, 22, 1009-1028.	1.5	3
70	BATHYMETRIC PATTERNS OF MORPHOLOGICAL DISPARITY IN DEEP-SEA GASTROPODS FROM THE WESTERN NORTH ATLANTIC BASIN. Evolution; International Journal of Organic Evolution, 2005, 59, 1492.	1.1	2
71	Influence of ecological role on bathymetric patterns of deep-sea species: size clines in parasitic gastropods. Marine Ecology - Progress Series, 2006, 320, 161-167.	0.9	2
72	Multiple Processes Generate Productivity-Diversity Relationships in Experimental Wood-Fall Communities. Ecology, 2016, , .	1.5	1

#	Article	IF	CITATIONS
73	Linking Evolution, Ecology, and Health: TriCEM. BioScience, 2015, 65, 748-749.	2.2	Ο
74	Louisiana Universities Marine Consortium (LUMCON). Limnology and Oceanography Bulletin, 2018, 27, 11-13.	0.2	0
75	Idiographic and nomothetic approaches to heterogeneity are complementary: Response to comments on "Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates― Paleobiology, 2020, 46, 275-277.	1.3	Ο
76	The macrofaunal metropolis in the sediments around the firstâ€ever deepâ€sea alligator fall. Marine Ecology, 0, , .	0.4	0