
MA Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Study on the Expended Energy on Structural Degradation of Lubricating Greases. Tribology Letters, 2022, 70, .	1.2	7
2	Influence of the Nanoclay Concentration and Oil Viscosity on the Rheological and Tribological Properties of Nanoclay-Based Ecolubricants. Lubricants, 2021, 9, 8.	1.2	6
3	A sustainable methanol-based solvent exchange method to produce nanocellulose-based ecofriendly lubricants. Journal of Cleaner Production, 2021, 319, 128673.	4.6	11
4	Rheological and Tribological Properties of Nanocellulose-Based Ecolubricants. Nanomaterials, 2021, 11, 2987.	1.9	5
5	On the Electro-Active Control of Nanocellulose-Based Functional Biolubricants. ACS Applied Materials & Interfaces, 2020, 12, 46490-46500.	4.0	8
6	Using process simulators in Chemical Engineering education: Is it possible to minimize the "black box― effect?. Computer Applications in Engineering Education, 2020, 28, 1369-1385.	2.2	7
7	Preliminary Insights into Electro-Sensitive Ecolubricants: A Comparative Analysis Based on Nanocelluloses and Nanosilicates in Castor Oil. Processes, 2020, 8, 1060.	1.3	11
8	Electro-active control of the viscous flow and tribological performance of ecolubricants based on phyllosilicate clay minerals and castor oil. Applied Clay Science, 2020, 198, 105830.	2.6	8
9	Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribology International, 2020, 146, 106231.	3.0	19
10	Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach. Materiales De Construccion, 2020, 70, 217.	0.2	4
11	Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. Journal of Industrial and Engineering Chemistry, 2019, 80, 626-632.	2.9	27
12	On the Steady-State Flow and Yielding Behaviour of Lubricating Greases. Fluids, 2019, 4, 6.	0.8	17
13	Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations. Polymers, 2018, 10, 670.	2.0	27
14	Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: Influence of epoxidation degree and the epoxide chemical structure. Carbohydrate Polymers, 2018, 199, 563-571.	5.1	19
15	Suitability of ethyl cellulose as multifunctional additive for blends of vegetable oil-based lubricants. Journal of Cleaner Production, 2017, 151, 1-9.	4.6	44
16	Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribology International, 2014, 69, 110-117.	3.0	195
17	The use of rosemary extracts in vegetable oil-based lubricants. Industrial Crops and Products, 2014, 62, 474-480.	2.5	19
18	Viscosity modification of highâ€oleic sunflower and castor oils with acid oilsâ€derived estolides for lubricant applications. European Journal of Lipid Science and Technology, 2013, 115, 1173-1182.	1.0	18

MA DELGADO

#	Article	IF	CITATIONS
19	Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils. Journal of Industrial and Engineering Chemistry, 2013, 19, 1289-1298.	2.9	50
20	Chemical, thermal and viscous characterization of high-oleic sunflower and olive pomace acid oils and derived estolides. Grasas Y Aceites, 2013, 64, 497-508.	0.3	21
21	Low-temperature flow behaviour of vegetable oil-based lubricants. Industrial Crops and Products, 2012, 37, 383-388.	2.5	100
22	Natural and Synthetic Antioxidant Additives for Improving the Performance of New Biolubricant Formulations. Journal of Agricultural and Food Chemistry, 2011, 59, 12917-12924.	2.4	62
23	Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas Y Aceites, 2011, 62, 328-336.	0.3	29
24	Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. Journal of Industrial and Engineering Chemistry, 2011, 17, 705-711.	2.9	30
25	Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydrate Polymers, 2011, 83, 151-158.	5.1	76
26	Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Industrial Crops and Products, 2010, 32, 607-612.	2.5	167
27	Oleins as a source of estolides for biolubricant applications. Grasas Y Aceites, 2010, 61, 171-174.	0.3	28
28	Transient shear flow of model lithium lubricating greases. Mechanics of Time-Dependent Materials, 2009, 13, 63-80.	2.3	19
29	Viscosity Modification of High-Oleic Sunflower Oil with Polymeric Additives for the Design of New Biolubricant Formulations. Environmental Science & Technology, 2009, 43, 2060-2065.	4.6	71
30	Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green Chemistry, 2009, 11, 686.	4.6	74
31	Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chemical Engineering Research and Design, 2008, 86, 1073-1082.	2.7	38
32	Effect of rheological behaviour of lithium greases on the friction process. Industrial Lubrication and Tribology, 2008, 60, 37-45.	0.6	36
33	Transient Shear Flow of Model Lithium Lubricating Greases. AIP Conference Proceedings, 2008, , .	0.3	0
34	Influence of Soap Concentration and Oil Viscosity on the Rheology and Microstructure of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 1902-1910.	1.8	112
35	On the drag reduction for the two-phase horizontal pipe flow of highly viscous non-Newtonian liquid/air mixtures: Case of lubricating grease. International Journal of Multiphase Flow, 2006, 32, 232-247.	1.6	24
36	Evaluation of wall slip effects in the lubricating grease/air two-phase flow along pipelines. Journal of Non-Newtonian Fluid Mechanics, 2006, 139, 190-196.	1.0	8

MA DELGADO

#	Article	IF	CITATIONS
37	Thermorheological behaviour of a lithium lubricating grease. Tribology Letters, 2006, 23, 47-54.	1.2	92
38	Processing and Formulation of Lithium Lubricating Greases. AIP Conference Proceedings, 2006, , .	0.3	0
39	Experimental study of grease flow in pipelines: wall slip and air entrainment effects. Chemical Engineering and Processing: Process Intensification, 2005, 44, 805-817.	1.8	39
40	Relationship Among Microstructure, Rheology and Processing of a Lithium Lubricating Grease. Chemical Engineering Research and Design, 2005, 83, 1085-1092.	2.7	85
41	Mixing rheometry for studying the manufacture of lubricating greases. Chemical Engineering Science, 2005, 60, 2409-2418.	1.9	71
42	Socrative, a powerful digital tool for enriching the teaching–learning process and promoting interactive learning in Chemistry and Chemical Engineering studies. Computer Applications in Engineering Education, 0, , .	2.2	7