Thummanoon Prodpran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455235/publications.pdf

Version: 2024-02-01

105 papers 6,058 citations

38 h-index 74018 75 g-index

105 all docs 105 docs citations

105 times ranked 4056 citing authors

#	Article	IF	CITATIONS
1	Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 2012, 28, 189-199.	5.6	435
2	Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 2012, 134, 1571-1579.	4.2	335
3	Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 2014, 41, 265-273.	5.6	282
4	Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 2006, 20, 492-501.	5.6	257
5	Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocolloids, 2012, 29, 389-397.	5.6	234
6	Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids, 2011, 25, 1085-1097.	5.6	222
7	Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry, 2011, 129, 1179-1186.	4.2	198
8	Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 2013, 117, 350-360.	2.7	195
9	Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. International Journal of Biological Macromolecules, 2012, 51, 774-782.	3.6	162
10	Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50 3
11	Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocolloids, 2015, 48, 248-259.	5.6	145
12	Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
13	Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids, 2012, 29, 226-233.	5.6	127
14	Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 2014, 41, 33-43.	5.6	124
15	Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level. Journal of Food Engineering, 2010, 100, 85-92.	2.7	122
16	Properties of fish skin gelatin film incorporated with seaweed extract. Journal of Food Engineering, 2009, 95, 151-157.	2.7	116
17	Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids, 2016, 56, 93-107.	5.6	116
18	Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (<i>Priacanthus tayenus</i> Priacanthus macracanthus). Journal of the Science of Food and Agriculture, 2010, 90, 132-138.	1.7	109

#	Article	IF	CITATIONS
19	Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocolloids, 2014, 39, 58-67.	5.6	107
20	Properties and microstructure of protein-based film from round scad (Decapterus maruadsi) muscle as affected by palm oil and chitosan incorporation. International Journal of Biological Macromolecules, 2007, 41, 605-614.	3.6	99
21	Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. International Journal of Biological Macromolecules, 2009, 44, 143-148.	3.6	95
22	Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate. International Journal of Biological Macromolecules, 2011, 49, 663-673.	3.6	88
23	Properties and antioxidative activity of fish gelatin-based film incorporated with epigallocatechin gallate. Food Hydrocolloids, 2018, 80, 212-221.	5.6	78
24	Physico-Mechanical Characterization and Antimicrobial Properties of Fish Protein Isolate/Fish Skin Gelatin-Zinc Oxide (ZnO) Nanocomposite Films. Food and Bioprocess Technology, 2016, 9, 101-112.	2.6	73
25	Effect of pH on the properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi. Bioresource Technology, 2007, 98, 221-225.	4.8	70
26	Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocolloids, 2021, 111, 106384.	5.6	64
27	Effect of phenolic compounds on the properties of porcine plasma protein-based film. Food Hydrocolloids, 2009, 23, 736-741.	5.6	61
28	Ultrasoundâ€Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity. Journal of Food Science, 2019, 84, 224-234.	1.5	58
29	Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids, 2015, 47, 61-68.	5.6	57
30	Molecular and functional properties of gelatin from the skin of unicorn leatherjacket as affected by extracting temperatures. Food Chemistry, 2013, 138, 1431-1437.	4.2	56
31	Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic) Tj ETQq1 1 0).784314 r 5.6	gBT /Overlog
32	Fish gelatin monolayer and bilayer films incorporated with epigallocatechin gallate: Properties and their use as pouches for storage of chicken skin oil. Food Hydrocolloids, 2019, 89, 783-791.	5.6	51
33	Properties of film from splendid squid (Loligo formosana) skin gelatin with various extraction temperatures. International Journal of Biological Macromolecules, 2012, 51, 489-496.	3.6	50
34	Impact of divalent salts and bovine gelatin on gel properties of phosphorylated gelatin from the skin of unicorn leatherjacket. LWT - Food Science and Technology, 2014, 55, 477-482.	2.5	46
35	Physicochemical and functional properties of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as affected by extraction conditions. Food Bioscience, 2013, 2, 1-9.	2.0	44
36	Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk. Journal of Food Science and Technology, 2015, 52, 7669-7682.	1.4	43

#	Article	IF	Citations
37	Properties of a protein-based film from round scad (Decapterus maruadsi) as affected by muscle types and washing. Food Chemistry, 2007, 103, 867-874.	4.2	42
38	Roles of lipid oxidation and pH on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocolloids, 2011, 25, 426-433.	5.6	41
39	Round scad protein-based film: Storage stability and its effectiveness for shelf-life extension of dried fish powder. LWT - Food Science and Technology, 2009, 42, 1238-1244.	2.5	40
40	Characteristics and gelling property of phosphorylated gelatin from the skin of unicorn leatherjacket. Food Chemistry, 2014, 146, 591-596.	4.2	40
41	Extraction and Characterisation of Collagen from the Skin of Golden Carp (Probarbus Jullieni), a Processing By-Product. Waste and Biomass Valorization, 2018, 9, 783-791.	1.8	40
42	Indigenous proteases in the skin of unicorn leatherjacket (Alutherus monoceros) and their influence on characteristic and functional properties of gelatin. Food Chemistry, 2011, 127, 508-515.	4.2	39
43	Characteristics of bio-nanocomposite films from tilapia skin gelatin incorporated with hydrophilic and hydrophobic nanoclays. Journal of Food Engineering, 2014, 143, 195-204.	2.7	39
44	Autolysis study of bigeye snapper (Priacanthus macracanthus) skin and its effect on gelatin. Food Hydrocolloids, 2007, 21, 537-544.	5.6	38
45	Characteristics and gelling properties of gelatin from goat skin as affected by drying methods. Journal of Food Science and Technology, 2017, 54, 1646-1654.	1.4	38
46	Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 2020, 105, 105792.	5.6	38
47	Characteristics of film based on protein isolate from red tilapia muscle with negligible yellow discoloration. International Journal of Biological Macromolecules, 2011, 48, 758-767.	3.6	36
48	Effect of phosphorylation on gel properties of gelatin from the skin ofÂunicorn leatherjacket. Food Hydrocolloids, 2014, 35, 694-699.	5.6	36
49	Effect of chitooligosaccharide from squid pen on gel properties of sardine surimi gel and its stability during refrigerated storage. International Journal of Food Science and Technology, 2019, 54, 2831-2838.	1.3	35
50	Properties, Microstructure and Heat Seal Ability of Bilayer Films Based on Fish Gelatin and Emulsified Gelatin Films. Food Biophysics, 2017, 12, 234-243.	1.4	34
51	Effect of proteases and alcohols used for debittering on characteristics and antioxidative activity of protein hydrolysate from salmon frames. Journal of Food Science and Technology, 2020, 57, 473-483.	1.4	34
52	Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocolloids, 2019, 88, 291-300.	5.6	33
53	Film forming ability of gelatins from splendid squid (Loligo formosana) skin bleached with hydrogen peroxide. Food Chemistry, 2013, 138, 1101-1108.	4.2	31
54	Comparative Characterization of Bovine and Fish Gelatin Films Fabricated by Compression Molding and Solution Casting Methods. Journal of Polymers and the Environment, 2018, 26, 1239-1252.	2.4	31

#	Article	IF	CITATIONS
55	Effect of some factors and pretreatment on the properties of porcine plasma protein-based films. LWT - Food Science and Technology, 2009, 42, 1545-1552.	2.5	27
56	Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids, 2019, 97, 105236.	5.6	27
57	Properties of protein-based film from round scad (Decapterus maruadsi) muscle as influenced by fish quality. LWT - Food Science and Technology, 2008, 41, 753-763.	2.5	25
58	Comparative studies on properties and antioxidative activity of fish skin gelatin films incorporated with essential oils from various sources. International Aquatic Research, 2014, 6, 1.	1.5	25
59	Properties of Bio-nanocomposite Films from Tilapia Skin Gelatin as Affected by Different Nanoclays and Homogenising Conditions. Food and Bioprocess Technology, 2014, 7, 3269-3281.	2.6	25
60	Properties and Characteristics of Multi-Layered Films from Tilapia Skin Gelatin and Poly(Lactic Acid). Food Biophysics, 2017, 12, 222-233.	1.4	25
61	Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of Pacific white shrimp. Journal of Food Science and Technology, 2019, 56, 1145-1154.	1.4	25
62	Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film: Characteristics and bioactivities. Food Hydrocolloids, 2022, 133, 107916.	5.6	25
63	Yield and chemical composition of lipids extracted from solid residues of protein hydrolysis of Pacific white shrimp cephalothorax using ultrasound-assisted extraction. Food Bioscience, 2018, 26, 169-176.	2.0	24
64	Fish gelatin films laminated with emulsified gelatin film or poly(lactic) acid film: Properties and their use as bags for storage of fried salmon skin. Food Hydrocolloids, 2021, 111, 106199.	5.6	24
65	Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions. Asian-Australasian Journal of Animal Sciences, 2016, 29, 845-854.	2.4	23
66	Effect of Psyllium (Plantago ovata Forks) Husk on Characteristics, Rheological and Textural Properties of Threadfin Bream Surimi Gel. Foods, 2021, 10, 1181.	1.9	23
67	Effects of bio-nanocomposite films from tilapia and squid skin gelatins incorporated with ethanolic extract from coconut husk on storage stability of mackerel meat powder. Food Packaging and Shelf Life, 2015, 6, 42-52.	3.3	22
68	Effect of squalene rich fraction from shark liver on mechanical, barrier and thermal properties of fish (Probarbus Jullieni) skin gelatin film. Food Hydrocolloids, 2019, 96, 123-133.	5.6	22
69	Properties and Stability of Protein-based Films from Red Tilapia (Oreochromis niloticus) Protein Isolate Incorporated with Antioxidant during Storage. Food and Bioprocess Technology, 2013, 6, 1113-1126.	2.6	21
70	Effects of bleaching on characteristics and gelling property of gelatin from splendid squid (Loligo) Tj ETQq0 0 0 r	gBŢ_{Over	lock 10 Tf 50
71	Quality changes of shrimp cracker covered with fish gelatin film without and with palm oil incorporated during storage. International Aquatic Research, 2016, 8, 227-238.	1.5	19
72	Interfacial properties of gelatin from goat skin as influenced by drying methods. LWT - Food Science and Technology, 2016, 73, 102-107.	2.5	19

#	Article	IF	Citations
73	Influence of palm oil and glycerol on properties of fish skin gelatin-based films. Journal of Food Science and Technology, 2016, 53, 2715-2724.	1.4	19
74	Characteristics and gel properties of gelatin from goat skin as affected by pretreatments using sodium sulfate and hydrogen peroxide. Journal of the Science of Food and Agriculture, 2016, 96, 2193-2203.	1.7	18
75	Squalene from Fish Livers Extracted by Ultrasoundâ€Assisted Direct <i>In Situ</i> Saponification: Purification and Molecular Characteristics. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1059-1071.	0.8	18
76	Enhancement of Hydrophobicity of Fish Skin Gelatin via Molecular Modification with Oxidized Linoleic Acid. Journal of Chemistry, 2019, 2019, 1-11.	0.9	18
77	Effects of hydrogen peroxide and Fenton's reagent on the properties of film from cuttlefish (Sepia) Tj ETQq1 1	Q.784314 4:2	FrgBT /Over
78	Emulsion stability and properties of fish gelatinâ€based films as affected by palm oil and surfactants. Journal of the Science of Food and Agriculture, 2016, 96, 2504-2513.	1.7	16
79	Storage stability of fish gelatin films by molecular modification or direct incorporation of oxidized linoleic acid: Comparative studies. Food Hydrocolloids, 2021, 113, 106481.	5.6	15
80	Characteristics and antioxidant activity of leaf essential oil–incorporated fish gelatin films as affected by surfactants. International Journal of Food Science and Technology, 2013, 48, 2143-2149.	1.3	14
81	Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Production Processing and Nutrition, 2019, 1 , .	1.1	14
82	Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp (Probarbus Jullieni) skin gelatin film. Food Hydrocolloids, 2019, 97, 105201.	5.6	13
83	Protein Hydrolysates from Pacific White Shrimp Cephalothorax Manufactured with Different Processes: Compositions, Characteristics and Antioxidative Activity. Waste and Biomass Valorization, 2020, 11, 1657-1670.	1.8	13
84	Quality characteristics of fried fish crackers packaged in gelatin bags: Effect of squalene and storage time. Food Hydrocolloids, 2020, 99, 105378.	5.6	13
85	Properties of red tilapia (Oreochromis niloticus) protein based film as affected by cryoprotectants. Food Hydrocolloids, 2013, 32, 245-251.	5.6	11
86	Effects of Soy Lecithin Levels and Microfluidization Conditions on Properties of Fish Gelatin-Based Film Incorporated with Palm Oil. International Journal of Food Engineering, 2016, 12, 647-660.	0.7	11
87	Properties of chicken protein isolate/fish gelatin blend film incorporated with phenolic compounds and its application as pouch for packing chicken skin oil. Food Packaging and Shelf Life, 2021, 30, 100761.	3.3	11
88	The effect of myofibrillar/sarcoplasmic protein ratios on the properties of round scad muscle protein based film. European Food Research and Technology, 2008, 227, 215-222.	1.6	10
89	Effects of pHs on properties of bio-nanocomposite based on tilapia skin gelatin and Cloisite Na+. International Journal of Biological Macromolecules, 2015, 75, 388-397.	3.6	10
90	Characteristics and Gel Properties of Gelatin from Goat Skin as Affected by Extraction Conditions. Journal of Food Processing and Preservation, 2017, 41, e12949.	0.9	10

#	Article	IF	Citations
91	Influence of modified natural rubbers as compatibilizers on the properties of flexible food contact materials based on NR/PBAT blends. Materials and Design, 2020, 196, 109134.	3.3	10
92	Characteristics and gel properties of gelatin from goat skin as affected by spray drying. Drying Technology, 2017, 35, 218-226.	1.7	8
93	Physical and chemical characteristics of Asian sea bass bioâ€calcium powders as affected by ultrasonication treatment and drying method. Journal of Food Biochemistry, 2021, 45, e13652.	1.2	8
94	Use of Epoxidized Natural Rubber (ENR) for Property Improvement of Gelatin Film. Indian Journal of Science and Technology, 2016, 8, .	0.5	6
95	Characteristics of Gelatin Extracted from the Swim Bladder of Yellowfin Tuna (<i>Thunnus) Tj ETQq1 1 0.784314 2016, 25, 1190-1201.</i>	rgBT /Ove 0.6	erlock 10 Tf 5 6
96	Effects of oxygen and antioxidants on the lipid oxidation and yellow discolouration of film from red tilapia mince. Journal of the Science of Food and Agriculture, 2012, 92, 2507-2517.	1.7	4
97	Elemental and structural changes associated with white spot formation in sunâ€dried Pacific white shrimp shells. International Journal of Food Science and Technology, 2021, 56, 2760-2767.	1.3	4
98	A novel natural rubber pressure sensitive adhesive patch amended with cinnamon oil for preserving bakery product. Food Packaging and Shelf Life, 2021, 29, 100729.	3.3	4
99	Effect of Asian Sea Bass (<i>Lates calcarifer</i>) Bio-calcium in Combination with Different Calcium Salts on Gel Properties of Threadfin Bream Surimi. Journal of Aquatic Food Product Technology, 2021, 30, 1173-1188.	0.6	4
100	Effect of Melanin-Free Ink on Mechanical Properties and Yellow Discolouration of Protein Film from Washed Sardine Mince. Food Biophysics, 2017, 12, 164-171.	1.4	2
101	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2017, 17, .	0.4	2
102	Soluble Asian sea bass bone bioâ€calcium: characteristics, bioavailability across Cacoâ€2 cells and fortification into apple juice. International Journal of Food Science and Technology, 2022, 57, 5859-5868.	1.3	2
103	Characteristics and seal ability of blend films based on chicken protein isolate and fish skin gelatin. Journal of Food Science and Technology, 0 , 1 .	1.4	1
104	Fabrication of water-soluble loose-fill foam from tamarind (<i>Tamarindus indica</i> L.) seed polysaccharide by mechanical frothing and freeze-drying process. Journal of Cellular Plastics, 2021, 57, 643-658.	1.2	0
105	Properties and characteristics of salmon frame protein isolate films influenced by glycerol and squalene., 2022, 29, 676-685.		0