
Hon Fai Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455203/publications.pdf Version: 2024-02-01

HON FALCHAN

#	Article	IF	CITATIONS
1	Injectable bioactive glass/sodium alginate hydrogel with immunomodulatory and angiogenic properties for enhanced tendon healing. Bioengineering and Translational Medicine, 2023, 8, .	3.9	8
2	Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect. Biofabrication, 2022, 14, 015002.	3.7	6
3	Establishment of iPS cell line (KLRMMEi002-A) by reprogramming peripheral blood mononuclear cells from a patient with USH2A-associated Usher syndrome. Stem Cell Research, 2022, 60, 102699.	0.3	3
4	Delivery of Stem Cell Secretome for Therapeutic Applications. ACS Applied Bio Materials, 2022, 5, 2009-2030.	2.3	11
5	LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomaterialia, 2022, 146, 159-176.	4.1	5
6	Membrane-fusogenic biomimetic particles: a new bioengineering tool learned from nature. Journal of Materials Chemistry B, 2022, 10, 6841-6858.	2.9	11
7	Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS Applied Materials & Interfaces, 2022, 14, 27525-27537.	4.0	13
8	Engineering Nanoâ€Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. Small Methods, 2021, 5, e2001191.	4.6	31
9	Macrophages activated by akermanite/alginate composite hydrogel stimulate migration of bone marrow-derived mesenchymal stem cells. Biomedical Materials (Bristol), 2021, 16, 045004.	1.7	10
10	Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomaterialia, 2021, 134, 32-42.	4.1	5
11	Nanomedicine to advance the treatment of bacteria-induced acute lung injury. Journal of Materials Chemistry B, 2021, 9, 9100-9115.	2.9	6
12	Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. Journal of Tissue Engineering, 2021, 12, 204173142098671.	2.3	29
13	Establishment of non-integrate induced pluripotent stem cell line CSUASOi006-A, from urine-derived cells of a PRPF8-related dominant retinitis pigmentosa patient. Stem Cell Research, 2020, 49, 102041.	0.3	1
14	Light: A Magical Tool for Controlled Drug Delivery. Advanced Functional Materials, 2020, 30, 2005029.	7.8	134
15	Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering, 2020, 7, 47.	1.6	16
16	Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials, 2020, 256, 120216.	5.7	128
17	Transcriptomic Analysis of the Developmental Similarities and Differences Between the Native Retina and Retinal Organoids. , 2020, 61, 6.		20
18	Establishment of induced pluripotent stem cell line CSUASOi003- A from an autosomal recessive retinitis pigmentosa patient carrying compound heterozygous mutations in CRB1 gene. Stem Cell Research, 2020, 44, 101742.	0.3	3

Hon Fai Chan

#	Article	IF	CITATIONS
19	Establishment of induced pluripotent stem cell line CSUASOi004-A by reprogramming peripheral blood mononuclear cells of a PRPF6-related dominant retinitis pigmentosa patient. Stem Cell Research, 2020, 45, 101793.	0.3	3
20	Establishment of a non-integrate iPS cell line CSUASOi002-A, from urine-derived cells of a female patient with macular corneal dystrophy carrying compound heterozygous CHST6 mutations. Stem Cell Research, 2019, 41, 101598.	0.3	1
21	Ingestible hydrogel device. Nature Communications, 2019, 10, 493.	5.8	168
22	Poly(ethylene glycol)-poly- <scp>l</scp> -glutamate complexed with polyethyleneimineâ^'polyglycine for highly efficient gene delivery <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3053-3062.	2.6	9
23	Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7503-7508.	3.3	60
24	Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. International Journal of Nanomedicine, 2018, Volume 13, 939-956.	3.3	26
25	The role of microfluidics in protein formulations with pre-programmed functional characteristics. Biologics: Targets and Therapy, 2018, Volume 12, 191-197.	3.0	2
26	High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets. Nanoscale, 2017, 9, 3485-3495.	2.8	25
27	Triphenylphosphonium-modified poly(ethylene glycol)-poly(Îμ-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. International Journal of Pharmaceutics, 2017, 522, 21-33.	2.6	41
28	Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin. Scientific Reports, 2017, 7, 46060.	1.6	45
29	Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Scientific Reports, 2017, 7, 46057.	1.6	59
30	Efficient Oneâ€Step Production of Microencapsulated Hepatocyte Spheroids with Enhanced Functions. Small, 2016, 12, 2720-2730.	5.2	89
31	242. Genetically Engineered Mesenchymal Stem Cell Spheroids for Brain Tumor Therapy. Molecular Therapy, 2016, 24, S95.	3.7	1
32	A Redox-Sensitive and RAGE-Targeting Nanocarrier for Hepatocellular Carcinoma Therapy. Molecular Pharmaceutics, 2016, 13, 3613-3625.	2.3	6
33	Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy. Journal of Controlled Release, 2016, 240, 454-464.	4.8	46
34	Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy. Molecular Pharmaceutics, 2016, 13, 699-709.	2.3	113
35	Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?. International Journal of Energy Production and Management, 2016, 3, 87-98.	1.9	30
36	iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1303-1311.	1.7	86

Hon Fai Chan

#	Article	IF	CITATIONS
37	3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures (Adv. Mater. 27/2015). Advanced Materials, 2015, 27, 4034-4034.	11.1	77
38	Immobilization of nucleic acid binding polymers as anti-inflammatory agent in autoimmunity. Journal of Controlled Release, 2015, 213, e136.	4.8	7
39	Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels. Scientific Reports, 2015, 5, 15116.	1.6	84
40	3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Advanced Materials, 2015, 27, 4035-4040.	11.1	720
41	Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems. Lab on A Chip, 2014, 14, 514-521.	3.1	27
42	Harnessing Localized Ridges for Highâ€Aspectâ€Ratio Hierarchical Patterns with Dynamic Tunability and Multifunctionality. Advanced Materials, 2014, 26, 1763-1770.	11.1	171
43	Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications. ACS Nano, 2014, 8, 3913-3920.	7.3	57
44	A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials, 2013, 34, 4564-4572.	5.7	86
45	Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Research and Therapy, 2013, 4, S10.	2.4	25
46	Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 2013, 65, 104-120.	6.6	839
47	Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Scientific Reports, 2013, 3, 3462.	1.6	196