
Congyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7455011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	3.7	25
2	Sustainable chemical upcycling of waste polyolefins by heterogeneous catalysis. SusMat, 2022, 2, 161-185.	7.8	39
3	High-Efficiency Semitransparent Light-Emitting Diodes with Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 19697-19703.	4.0	8
4	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	1.6	16
5	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	7.2	80
6	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	15.6	260
7	Suppressing Dehydroisomerization Boosts <i>n</i> â€Butane Dehydrogenation with High Butadiene Selectivity. Chemistry - A European Journal, 2021, 27, 11643-11648.	1.7	4
8	Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 3545-3554.	8.8	39
9	CsPbBr ₃ Nanocrystal Light-Emitting Diodes with Efficiency up to 13.4% Achieved by Careful Surface Engineering and Device Engineering. Journal of Physical Chemistry C, 2021, 125, 3110-3118.	1.5	29
10	Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials, 2020, 32, 308-314.	3.2	57
11	Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications, 2020, 11, 31.	5.8	185
12	Synthesis of lead halide perovskite nanocrystals by melt crystallization in halide salts. Chemical Communications, 2020, 56, 11291-11294.	2.2	12
13	Lowâ€Dimensionalâ€Networked Cesium Lead Halide Perovskites: Properties, Fabrication, and Applications. Small Methods, 2020, 4, 2000303.	4.6	38
14	High-efficiency perovskite nanocrystal light-emitting diodes <i>via</i> decorating NiO _x on the nanocrystal surface. Nanoscale, 2020, 12, 8711-8719.	2.8	23
15	Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430.	1.5	12
16	Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 26161-26169.	1.5	59
17	Critical role of metal ions in surface engineering toward brightly luminescent and stable cesium lead bromide perovskite quantum dots. Nanoscale, 2019, 11, 2602-2607.	2.8	33
18	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	3.7	9

CONGYANG ZHANG

#	Article	IF	CITATIONS
19	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	5.8	56
20	Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2â^ and metal ions. Chemical Communications, 2018, 54, 9345-9348.	2.2	33
21	Postsynthesis Phase Transformation for CsPbBr ₃ /Rb ₄ PbBr ₆ Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Interfaces, 2018, 10, 23303-23310.	4.0	98
22	Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes. Nano Energy, 2018, 51, 358-365.	8.2	40
23	Morphology Evolution and Degradation of CsPbBr ₃ Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Applied Materials & Interfaces, 2017, 9, 7249-7258.	4.0	314
24	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	5.8	374
25	Transformation of metal-organic frameworks for molecular sieving membranes. Nature Communications, 2016, 7, 11315.	5.8	140
26	Metal–Organic Framework/PVDF Composite Membranes with High H ₂ Permselectivity Synthesized by Ammoniation. Chemistry - A European Journal, 2015, 21, 7224-7230.	1.7	72
27	Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes. Journal of Materials Chemistry A, 2015, 3, 20345-20351.	5.2	45
28	Synthesis of trinity metal–organic framework membranes for CO ₂ capture. Chemical Communications, 2014, 50, 3214-3216.	2.2	51
29	Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal–organic framework/P/VDE hollow fiber membranes. Chemical Communications, 2014, 50, 9711	2.2	49