
Marta Nesvorna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae). Scientific Reports, 2017, 7, 2.	1.6	126
2	Detection and Identification of Species-Specific Bacteria Associated with Synanthropic Mites. Microbial Ecology, 2012, 63, 919-928.	1.4	65
3	Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis. Scientific Reports, 2017, 7, 5084.	1.6	58
4	Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim. Microbial Ecology, 2017, 73, 685-698.	1.4	55
5	Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Experimental and Applied Acarology, 2016, 69, 1-9.	0.7	54
6	Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria. Microbial Ecology, 2017, 74, 947-960.	1.4	51
7	Bacterial community associated with worker honeybees (<i>Apis mellifera</i>) affected by European foulbrood. PeerJ, 2017, 5, e3816.	0.9	50
8	Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities. Frontiers in Microbiology, 2016, 7, 1046.	1.5	43
9	Point mutations in the sodium channel gene conferring tau-fluvalinate resistance in <i>Varroa destructor</i> . Pest Management Science, 2014, 70, 889-894.	1.7	42
10	Bacteria detected in the honeybee parasitic mite <i>Varroa destructor</i> collected from beehive winter debris. Journal of Applied Microbiology, 2015, 119, 640-654.	1.4	37
11	The Effect of Antibiotics on Associated Bacterial Community of Stored Product Mites. PLoS ONE, 2014, 9, e112919.	1.1	33
12	Bartonella-like bacteria carried by domestic mite species. Experimental and Applied Acarology, 2014, 64, 21-32.	0.7	33
13	Bacillus thuringiensis var. tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Experimental and Applied Acarology, 2009, 49, 339-346.	0.7	32
14	Assessment of Bacterial Communities in Thirteen Species of Laboratory-Cultured Domestic Mites (Acari: Acaridida). Journal of Economic Entomology, 2016, 109, 1887-1896.	0.8	32
15	Population and Culture Age Influence the Microbiome Profiles of House Dust Mites. Microbial Ecology, 2019, 77, 1048-1066.	1.4	28
16	Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria. Microbial Ecology, 2016, 72, 448-459.	1.4	26
17	Efficacy of selected pesticides against synanthropic mites under laboratory assay. Pest Management Science, 2011, 67, 446-457.	1.7	25
18	Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 1129-1135.	1.1	24

#	Article	IF	CITATIONS
19	The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: αâ€Amylases and αâ€glucosidases are suitable targets for inhibitorâ€based strategies of mite control. Archives of Insect Biochemistry and Physiology, 2009, 71, 139-158.	0.6	23
20	Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata). Journal of Invertebrate Pathology, 2013, 112, 20-23.	1.5	23
21	Detection of tau-fluvalinate resistance in the mite Varroa destructor based on the comparison of vial test and PCR–RFLP of kdr mutation in sodium channel gene. Experimental and Applied Acarology, 2019, 77, 161-171.	0.7	23
22	Comparison of the resistance of mono- and multilayer packaging films to stored-product insects in a laboratory test. Food Control, 2017, 73, 566-573.	2.8	22
23	Suitability of a range of Fusarium species to sustain populations of three stored product mite species (Acari: Astigmata). Journal of Stored Products Research, 2012, 48, 37-45.	1.2	19
24	The effect of stored barley cultivars, temperature and humidity on population increase of Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae. Experimental and Applied Acarology, 2013, 60, 241-252.	0.7	19
25	Differential allergen expression in three <i>Tyrophagus putrescentiae</i> strains inhabited by distinct microbiome. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2502-2507.	2.7	19
26	Shift of Bacterial Community in Synanthropic Mite Tyrophagus putrescentiae Induced by Fusarium Fungal Diet. PLoS ONE, 2012, 7, e48429.	1.1	19
27	<i>Carpoglyphus lactis</i> (Acari: Astigmata) from various dried fruits differed in associated micro-organisms. Journal of Applied Microbiology, 2015, 118, 470-484.	1.4	18
28	Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets. Frontiers in Microbiology, 2018, 9, 2590.	1.5	18
29	Feeding Interactions Between Microorganisms and the House Dust Mites Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyphidae). Journal of Medical Entomology, 2019, 56, 1669-1677.	0.9	18
30	Differential levels of mite infestation of wheat and barley in Czech grain stores. Insect Science, 2009, 16, 255-262.	1.5	17
31	Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae). Experimental and Applied Acarology, 2016, 70, 309-327.	0.7	17
32	Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae. Applied and Environmental Microbiology, 2017, 83, .	1.4	17
33	Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiology Ecology, 2019, 95, .	1.3	17
34	Temperature Preference and Respiration of Acaridid Mites. Journal of Economic Entomology, 2010, 103, 2249-2257.	0.8	16
35	Spatioâ€ŧemporal dynamics of <i>Varroa destructor</i> resistance to <i>tau</i> â€fluvalinate in Czechia, associated with L925V sodium channel point mutation. Pest Management Science, 2019, 75, 1287-1294.	1.7	16
36	The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation. Microbial Ecology, 2019, 77, 488-501.	1.4	15

Marta Nesvorna

#	Article	IF	CITATIONS
37	Acaricidal effects of natural six-carbon and nine-carbon aldehydes on stored-product mites. Experimental and Applied Acarology, 2008, 44, 315-321.	0.7	14
38	The toxicity of selected acaricides against five stored product mites under laboratory assay. Journal of Pest Science, 2011, 84, 387-391.	1.9	13
39	The toxic effect of chitosan/metalâ€impregnated textile to synanthropic mites. Pest Management Science, 2013, 69, 722-726.	1.7	12
40	The effect of <i>Tyrophagus putrescentiae</i> on <i>Fusarium poae</i> transmission and fungal community in stored barley in a laboratory experiment. Insect Science, 2014, 21, 65-73.	1.5	12
41	Detection and quantification of <i>Melissococcus plutonius</i> in honey bee workers exposed to European foulbrood in Czechia through conventional PCR, qPCR, and barcode sequencing. Journal of Apicultural Research, 2020, 59, 503-514.	0.7	12
42	Microbial Communities of Stored Product Mites: Variation by Species and Population. Microbial Ecology, 2021, 81, 506-522.	1.4	12
43	Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia. Experimental and Applied Acarology, 2016, 68, 127-137.	0.7	11
44	The efficacy of sieving, filth flotation and Tullgren heat extraction for detecting various developmental stages of Tribolium castaneum and Ephestia kuehniella in samples of wheat grain, flour and semolina. Journal of Stored Products Research, 2009, 45, 279-288.	1.2	10
45	The Influence of Environmental Temperature and Humidity on Temporal Decomposition of Cockroach Allergens Bla g 1 and Bla g 2 in Feces. Journal of Medical Entomology, 2010, 47, 1062-1070.	0.9	10
46	Microbiome variation during culture growth of the European house dust mite, <i>Dermatophagoides pteronyssinus</i> . FEMS Microbiology Ecology, 2021, 97, .	1.3	10
47	Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences. Journal of Proteomics, 2021, 249, 104356.	1.2	10
48	Effects of metabolic inhibitors on activity of Cry1Ab toxin to inhibit growth of <i>Ephestia kuehniella</i> larvae. Pest Management Science, 2008, 64, 1063-1068.	1.7	9
49	Stored product mites (Acari: Astigmata) infesting food in various types of packaging. Experimental and Applied Acarology, 2015, 65, 237-242.	0.7	9
50	<i>Cardinium</i> inhibits <i>Wolbachia</i> in its mite host, <i>Tyrophagus putrescentiae</i> , and affects host fitness. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
51	Effect of diatomaceous earth-treated wheat on population growth of stored product mites under laboratory test. International Journal of Acarology, 2014, 40, 269-273.	0.3	8
52	Comparison of the effect of insecticides on three strains <i>of Tyrophagus putrescentiae</i> (Acari:) Tj ETQ 1138-1144.	q0 0 0 rgB 1.7	T /Overlock 1 8
53	Differences in the Bacterial Community of Laboratory and Wild Populations of the Predatory Mite <i>Cheyletus eruditus</i> (Acarina: Cheyletidae) and Bacteria Transmission From Its Prey <i>Acarus siro</i> (Acari: Acaridae). Journal of Economic Entomology, 2016, 109, 1450-1457.	0.8	8
54	Do the microorganisms from laboratory culture spent growth medium affect house dust mite fitness and microbiome composition?. Insect Science, 2020, 27, 266-275.	1.5	8

#	Article	IF	CITATIONS
55	Sensitivity of polyphagous (<i>Plodia interpunctella</i>) and stenophagous (<i>Ephestia) Tj ETQq1 1 0.784314 r Science, 2021, 28, 1734-1744.</i>	gBT /Over 1.5	lock 10 Tf 5 7
56	Interactions of the Intracellular Bacterium <i>Cardinium</i> with Its Host, the House Dust Mite <i>Dermatophagoides farinae</i> , Based on Gene Expression Data. MSystems, 2021, 6, e0091621.	1.7	7
57	A laboratory comparison of the effect of acetone-diluted chlorfenapyr standards with a commercial suspension formulation on four domestic mites (ACARI: Astigmata). International Journal of Acarology, 2013, 39, 649-652.	0.3	5
58	DISEASES OF PREY MITES USED FOR MASS REARING PREDATORY MITES. Acta Horticulturae, 2014, , 177-185.	0.1	5
59	Long-term pre-exposure of the pest mite Tyrophagus putrescentiae to sub-lethal residues of bifenthrin on rapeseed did not affect its susceptibility to bifenthrin. Crop Protection, 2011, 30, 1227-1232.	1.0	4
60	Acarus siroandTyrophagus putrescentiae(Acari: Acarididae) transfer ofFusarium culmoruminto germinated barley increases mycotoxin deoxynivalenol content in barley under laboratory conditions. International Journal of Acarology, 2013, 39, 235-238.	0.3	4
61	<i>Cardinium</i> and <i>Wolbachia</i> are negatively correlated in the microbiome of various populations of stored product mite <i>Tyrophagus putrescentiae</i> . International Journal of Acarology, 2020, 46, 192-199.	0.3	4
62	A scientific note on the comparison of PCR based quantification methods of <i>Melissococcus plutonius</i> in honey bees. Journal of Apicultural Research, 2021, 60, 255-259.	0.7	4
63	Growth-suppressive effect of the α-amylase inhibitor of Triticum aestivum on stored-product mites varies by the species and type of diet. Experimental and Applied Acarology, 2014, 62, 57-65.	0.7	3
64	The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae. Microbial Ecology, 2023, 85, 1527-1540.	1.4	3
65	The Negative Effects of Feces-Associated Microorganisms on the Fitness of the Stored Product Mite Tyrophagus putrescentiae. Frontiers in Microbiology, 2022, 13, 756286.	1.5	2