Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454727/publications.pdf

Version: 2024-02-01

		109311	175241
50	3,620	35	52
papers	citations	h-index	g-index
56	56	56	5606
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCÎμ-NF-κB signaling pathway and VEGF-C/ Bcl-2 expression. Molecular Cancer, 2019, 18, 1.	19.2	408
2	Astrocyte Elevated Gene-1 is a Novel Prognostic Marker for Breast Cancer Progression and Overall Patient Survival. Clinical Cancer Research, 2008, 14, 3319-3326.	7.0	298
3	TGF- \hat{l}^2 induces miR-182 to sustain NF- \hat{l}^9 B activation in glioma subsets. Journal of Clinical Investigation, 2012, 122, 3563-3578.	8.2	169
4	miR-182 as a Prognostic Marker for Glioma Progression and Patient Survival. American Journal of Pathology, 2010, 177, 29-38.	3.8	148
5	Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Molecular Cancer, 2020, 19, 65.	19.2	143
6	MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop. Journal of Clinical Investigation, 2012, 122, 33-47.	8.2	143
7	Overexpression of GOLPH3 Promotes Proliferation and Tumorigenicity in Breast Cancer via Suppression of the FOXO1 Transcription Factor. Clinical Cancer Research, 2012, 18, 4059-4069.	7.0	129
8	MiRâ€136 promotes apoptosis of glioma cells by targeting AEGâ€1 and Bclâ€2. FEBS Letters, 2012, 586, 3608-3	61228	111
9	Knockdown of FLOT1 Impairs Cell Proliferation and Tumorigenicity in Breast Cancer through Upregulation of FOXO3a. Clinical Cancer Research, 2011, 17, 3089-3099.	7.0	106
10	MiR-454-3p-Mediated Wnt/ \hat{l}^2 -catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics, 2019, 9, 449-465.	10.0	103
11	miR-486 sustains NF-l̂ºB activity by disrupting multiple NF-l̂ºB-negative feedback loops. Cell Research, 2013, 23, 274-289.	12.0	97
12	LINC00173.v1 promotes angiogenesis and progression of lung squamous cell carcinoma by sponging miR-511-5p to regulate VEGFA expression. Molecular Cancer, 2020, 19, 98.	19.2	95
13	MicroRNA-30e* Suppresses Dengue Virus Replication by Promoting NF-κB–Dependent IFN Production. PLoS Neglected Tropical Diseases, 2014, 8, e3088.	3.0	84
14	Downregulation of miR-138 Sustains NF-κB Activation and Promotes Lipid Raft Formation in Esophageal Squamous Cell Carcinoma. Clinical Cancer Research, 2013, 19, 1083-1093.	7.0	81
15	Flotillin-1 Promotes Tumor Necrosis Factor-α Receptor Signaling and Activation of NF-κB in Esophageal Squamous Cell Carcinoma Cells. Gastroenterology, 2012, 143, 995-1005.e12.	1.3	74
16	miR-892b Silencing Activates NF-κB and Promotes Aggressiveness in Breast Cancer. Cancer Research, 2016, 76, 1101-1111.	0.9	70
17	Transcription factor AP-4 promotes tumorigenic capability and activates the Wnt \hat{I}^2 -catenin pathway in hepatocellular carcinoma. Theranostics, 2018, 8, 3571-3583.	10.0	70
18	Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Molecular Cancer, 2017, 16, 106.	19.2	69

#	Article	IF	Citations
19	Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression. Oncotarget, 2015, 6, 15180-15193.	1.8	62
20	The TGF- \hat{l}^2 signalling negative regulator PICK1 represses prostate cancer metastasis to bone. British Journal of Cancer, 2017, 117, 685-694.	6.4	58
21	miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma. Nature Communications, 2014, 5, 4620.	12.8	57
22	Golgi phosphoprotein 3 (<scp>GOLPH3</scp>) promotes hepatocellular carcinoma cell aggressiveness by activating the <scp>NF</scp> â€₽ <scp>B</scp> pathway. Journal of Pathology, 2015, 235, 490-501.	4.5	53
23	Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer, 2012, 12, 406.	2.6	52
24	TRIM14 promotes chemoresistance in gliomas by activating Wnt \hat{l}^2 -catenin signaling via stabilizing Dvl2. Oncogene, 2018, 37, 5403-5415.	5.9	52
25	Epigenetic silencing of <scp>SALL</scp> 2 confers tamoxifen resistance in breast cancer. EMBO Molecular Medicine, 2019, 11, e10638.	6.9	52
26	An ATM/TRIM37/NEMO Axis Counteracts Genotoxicity by Activating Nuclear-to-Cytoplasmic NF-κB Signaling. Cancer Research, 2018, 78, 6399-6412.	0.9	49
27	Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF- \hat{l}^2 signaling in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 4252-4264.	1.8	48
28	Circular RNA circlKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Molecular Cancer, 2021, 20, 98.	19.2	47
29	MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer. Theranostics, 2021, 11, 5794-5812.	10.0	47
30	MicroRNA in Human Glioma. Cancers, 2013, 5, 1306-1331.	3.7	45
31	Nkx2-8 Downregulation Promotes Angiogenesis and Activates NF-κB in Esophageal Cancer. Cancer Research, 2013, 73, 3638-3648.	0.9	44
32	TIMELESS confers cisplatin resistance in nasopharyngeal carcinoma by activating the Wnt/ \hat{l}^2 -catenin signaling pathway and promoting the epithelial mesenchymal transition. Cancer Letters, 2017, 402, 117-130.	7.2	42
33	Metastatic Heterogeneity of Breast Cancer Cells Is Associated with Expression of a Heterogeneous TGFβ-Activating miR424–503 Gene Cluster. Cancer Research, 2014, 74, 6107-6118.	0.9	39
34	Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-l ^o B signaling. EBioMedicine, 2019, 43, 188-200.	6.1	39
35	AKIP1 promotes early recurrence of hepatocellular carcinoma through activating the Wnt/ \hat{l}^2 -catenin/CBP signaling pathway. Oncogene, 2019, 38, 5516-5529.	5.9	37
36	The tumor-suppressor gene Nkx2.8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis, 2012, 33, 678-686.	2.8	36

#	Article	IF	CITATIONS
37	Loss of RBMS3 Confers Platinum Resistance in Epithelial Ovarian Cancer via Activation of miR-126-5p/β-catenin/CBP signaling. Clinical Cancer Research, 2019, 25, 1022-1035.	7.0	36
38	NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine, 2019, 43, 238-252.	6.1	34
39	Knockdown of stomatinâ€like protein 2 (STOML2) reduces the invasive ability of glioma cells through inhibition of the NFâ€lºB/MMPâ€9 pathway. Journal of Pathology, 2012, 226, 534-543.	4.5	33
40	Genotoxic stress-triggered \hat{l}^2 -catenin/JDP2/PRMT5 complex facilitates reestablishing glutathione homeostasis. Nature Communications, 2019, 10, 3761.	12.8	33
41	Epigenetic Induction of Mitochondrial Fission Is Required for Maintenance of Liver Cancer–Initiating Cells. Cancer Research, 2021, 81, 3835-3848.	0.9	33
42	AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-κB signaling pathway in hepatocellular carcinoma. Oncotarget, 2014, 5, 12057-12069.	1.8	31
43	circCDYL2 promotes trastuzumab resistance via sustaining HER2 downstream signaling in breast cancer. Molecular Cancer, 2022, 21, 8.	19.2	28
44	Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Stem Cell Research and Therapy, 2017, 8, 245.	5.5	26
45	Targeting TRIM3 deletion-induced tumor-associated lymphangiogenesis prohibits lymphatic metastasis in esophageal squamous cell carcinoma. Oncogene, 2019, 38, 2736-2749.	5.9	24
46	Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NFâ€PB signaling pathway. Molecular Carcinogenesis, 2018, 57, 1181-1190.	2.7	23
47	RNF219/ <i>α</i> â€Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. Advanced Science, 2021, 8, 2001961.	11.2	19
48	NR2F6 Expression Correlates with Pelvic Lymph Node Metastasis and Poor Prognosis in Early-Stage Cervical Cancer. International Journal of Molecular Sciences, 2016, 17, 1694.	4.1	17
49	Specific Regulation of m 6 A by SRSF7 Promotes the Progression of Glioblastoma. Genomics, Proteomics and Bioinformatics, 2023, 21, 707-728.	6.9	16
50	NKX2-8/PTHrP Axis-Mediated Osteoclastogenesis and Bone Metastasis in Breast Cancer. Frontiers in Oncology, 0, 12, .	2.8	2