Akihiko Masuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source. Applied Radiation and Isotopes, 2017, 127, 47-51.	1.5	26
2	Quasi-monoenergetic neutron energy spectra for 246 and 389MeV 7Li(p,n) reactions at angles from 0° to 30°. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 629, 43-49.	1.6	25
3	Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80–389 MeV 7Li(p,n) reactions using a time-of-flight method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 804, 50-58.	1.6	24
4	Recent progress of a soft X-ray generation system based on inverse Compton scattering at Waseda University. Radiation Physics and Chemistry, 2008, 77, 1136-1141.	2.8	16
5	International key comparison of neutron fluence measurements in monoenergetic neutron fields: CCRI(III)-K11. Metrologia, 2014, 51, 06009-06009.	1.2	16
6	Response Measurement of a Bonner Sphere Spectrometer for High-Energy Neutrons. IEEE Transactions on Nuclear Science, 2012, 59, 161-166.	2.0	14
7	Neutron Dosimetry in Quasi-Monoenergetic Fields of 244 and 387 MeV. IEEE Transactions on Nuclear Science, 2013, 60, 299-304.	2.0	12
8	Characterization of the WENDI-II REM Counter for its Application at MedAustron. Progress in Nuclear Science and Technology, 2011, 2, 258-262.	0.3	8
9	Development of a Compact Flat Response Neutron Detector. IEEE Transactions on Nuclear Science, 2011, 58, 2421-2425.	2.0	7
10	Cs–Te photocathode RF electron gun for applied research at the Waseda University. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2928-2931.	1.4	7
11	New idea of a small-sized neutron detector with a plastic fibre. Radiation Protection Dosimetry, 2011, 146, 92-95.	0.8	7
12	Calibration of a Bonner sphere spectrometer in quasi-monoenergetic neutron fields of 244 and 387 MeV. Journal of Instrumentation, 2011, 6, P10015-P10015.	1.2	6
13	Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200MeV proton-induced reactions in carbon. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Fourinment 2012 690 10-16	1.6	6
14	Development of the high-energy neutron fluence rate standard field in Japan with a peak energy of 45 MeV using the ⁷ Li(p,n) ⁷ Be reaction at TIARA. Journal of Nuclear Science and Technology, 2017, 54, 529-538.	1.3	5
15	Measurements of secondary-particle emissions from copper target bombarded with 24-GeV/c protons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990, 164977.	1.6	5
16	Measurement of neutron energy spectra behind shields for quasi-monoenergetic neutrons generated by 246-MeV and 389-MeV protons using a Bonner sphere spectrometer. Progress in Nuclear Science and Technology, 2014, 4, 332-336.	0.3	5
17	Development of compact coherent EUV source based on laser Compton scattering. Radiation Physics and Chemistry, 2009, 78, 1112-1115.	2.8	4
18	Time-of-Flight Measurements for Low-Energy Components of 45-MeV Quasi-Monoenergetic High-Energy Neutron Field from <formula formulatype="inline"><tex notation="TeX">\${^7{m Li}({m) Tj ETQq0 (</tex></formula>) 0 rgBT /Ov 2.0	verlgck 10 Tf 5

1295-1300.

Ακιμικό Masuda

#	Article	IF	CITATIONS
19	CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS. Radiation Protection Dosimetry, 2016, 170, 213-217.	0.8	4
20	Neutron detection efficiency and response functions of a thin neutron silicon sensor with low gamma-ray sensitivity. Radiation Measurements, 2017, 106, 585-590.	1.4	4
21	Neutron spectrometry and dosimetry in 100 and 300 MeV quasi-mono-energetic neutron field at RCNP, Osaka University, Japan. EPJ Web of Conferences, 2017, 153, 08020.	0.3	4
22	Development of a real-time neutron beam detector for boron neutron capture therapy using a thin silicon sensor. Applied Radiation and Isotopes, 2021, 176, 109856.	1.5	4
23	APMP comparison for the calibration of ambient dose equivalent meters in ISO neutron reference fields—APMP.RI(III)-S1. Metrologia, 2015, 52, 06019-06019.	1.2	4
24	Shielding benchmark experiment using hundreds of MeV quasi-monoenergetic neutron source by a large organic scintillator. Progress in Nuclear Science and Technology, 2014, 4, 327-331.	0.3	4
25	Response measurement of various neutron dose equivalent monitors in 134-387 MeV neutron fields. Progress in Nuclear Science and Technology, 2014, 4, 704-708.	0.3	4
26	Evaluation of the thermal neutron sensitivity, output linearity, and gamma-ray response of optical fiber-based neutron detectors using Li-glass scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1025, 166074	1.6	4
27	Measurements and Monte Carlo simulations of high-energy neutron streaming through the access maze using activation detectors at 24 GeV/c proton beam facility of CERN/CHARM. Journal of Nuclear Science and Technology, 2021, 58, 899-907.	1.3	3
28	Development of a Compact X-ray Source and Super-sensitization of Photo Resists for Soft X-ray Imaging. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 273-278.	0.3	2
29	Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields. Radiation Protection Dosimetry, 2011, 147, 394-400.	0.8	2
30	Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam. Radiation Protection Dosimetry, 2013, 155, 505-511.	0.8	2
31	Characterization of a real-time neutron detector for boron neutron capture therapy using a thin silicon diode. Radiation Measurements, 2020, 137, 106381.	1.4	2
32	Recent activities on neutron standardization in Japan. Progress in Nuclear Science and Technology, 2011, 1, 138-141.	0.3	2
33	Development of a neutron standard field using a heavy-water moderated 252Cf source at NMIJ-AIST. Progress in Nuclear Science and Technology, 2014, 4, 400-403.	0.3	2
34	Thermal neutron calibration method using an intense neutron beam from JRR-3M. Radiation Measurements, 2010, 45, 1124-1126.	1.4	1
35	Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 849, 94-101.	1.6	1
36	Shielding experiments of concrete and iron for the 244 MeV and 387 MeV quasi-mono energetic neutrons using a Bonner sphere spectrometer (at RCNP, Osaka Univ.). EPJ Web of Conferences, 2017, 153, 08016.	0.3	1

#	Article	IF	CITATIONS
37	Experimental analysis of neutron and background gamma-ray energy spectra of 80-400 MeV 7Li(p,n) reactions under the quasi-monoenergetic neutron field at RCNP, Osaka University. EPJ Web of Conferences, 2017, 153, 08019.	0.3	1
38	Shielding experiments of concrete and iron for the 244 MeV and 387 MeV quasi-mono energetic neutrons using an organic scintillator (at RCNP, Osaka Univ.). EPJ Web of Conferences, 2017, 153, 08021.	0.3	1
39	Development of a Neutron Detection System using an LGB Scintillator for Precise Measurements of Epi-Thermal Neutrons. , 2018, , .		1
40	IMPROVEMENT OF GAMMA-RAY SUBTRACTION PROCEDURE FOR A CURRENT-MODE NEUTRON DETECTOR WITH A PAIR OF 6Li- AND 7Li-GLASS SCINTILLATORS. Radiation Protection Dosimetry, 2020, 188, 117-122.	0.8	1
41	Simulation of Neutron Response Functions of Silicon Sensor Applied to Real-Time Personal Albedo Neutron Dosemeter in the Energy Range Between 0.01ÂEV and 10ÂKEV. Radiation Protection Dosimetry, 2021, 196, 110-113.	0.8	1
42	Spectrometer design of low energy neutrons for boron neutron capture therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020, 165848.	1.6	1
43	Characterization of quasi-monoenergetic neutron source using 137, 200, 246 and 389 MeV 7Li(p,n) reactions. Progress in Nuclear Science and Technology, 2014, 4, 657-660.	0.3	1
44	Development of back-illuminated thin silicon diode applied to fast neutron sensor in active personal dosimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1034, 166838.	1.6	1
45	Development of two-dimensional differential calibration method for a neutron dosimeter using a thermal neutron beam. , 2010, , .		Ο
46	Response measurements of a neutron dosimeter for epi-thermal region using a pulsed white beam. , 2013, , .		0
47	Development of a new type of manganese bath for determination of neutron emission rate of a neutron source. , 2014, , .		Ο
48	Dose Measurements through the Concrete and Iron Shields under the 100 to 400 MeV Quasi-Monoenergetic Neutron Field (at RCNP, Osaka Univ.). EPJ Web of Conferences, 2017, 153, 08022.	0.3	0
49	Characterization of the PTW 34031 ionization chamber (PMI) at RCNP with high energy neutrons ranging from 100 $\hat{a} \in 392$ MeV. EPJ Web of Conferences, 2017, 153, 08018.	0.3	0
50	Demonstration of BSS Unfolding Method for BNCT Neutron Field and Development of New BSS using Li-glass Scintillators coupled with Current-mode-operated PMTs for Intense Neutron Field. , 2018, , .		0
51	SIMULATED 8 MeV NEUTRON RESPONSE FUNCTIONS OF A THIN SILICON NEUTRON SENSOR. Radiation Protection Dosimetry, 2018, 180, 372-376.	0.8	0
52	Characterization of Hundreds of MeV 7Li(p,n) Quasi-Monoenergetic Neutron Source at RCNP Using a Proton Recoil Telescope and TOF Technique. , 2016, , .		0