Jaqueline S Generoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomarkers for sepsis: more than just fever and leukocytosis—a narrative review. Critical Care, 2022, 26, 14.	2.5	126
2	A crosstalk between gut and brain in sepsis-induced cognitive decline. Journal of Neuroinflammation, 2022, 19, .	3.1	29
3	The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacological Research, 2021, 164, 105314.	3.1	144
4	The blood-brain barrier dysfunction in sepsis. Tissue Barriers, 2021, 9, 1840912.	1.6	32
5	Receptor for Advanced Glycation End Products (RAGE) Mediates Cognitive Impairment Triggered by Pneumococcal Meningitis. Neurotherapeutics, 2021, 18, 640-653.	2.1	16
6	Neurobiology of COVID-19: how can the virus affect the brain?. Revista Brasileira De Psiquiatria, 2021, 43, 650-664.	0.9	31
7	The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Revista Brasileira De Psiquiatria, 2021, 43, 293-305.	0.9	87
8	The impact of early life stress and immune challenge on behavior and glia cells alteration in late adolescent rats. International Journal of Developmental Neuroscience, 2021, 81, 407-415.	0.7	3
9	Folic acid alleviates the blood brain barrier permeability and oxidative stress and prevents cognitive decline in sepsis-surviving rats. Microvascular Research, 2021, 137, 104193.	1.1	11
10	The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis. Molecular Neurobiology, 2021, 58, 2724-2733.	1.9	4
11	Neuroinflammation trajectories precede cognitive impairment after experimental meningitis—evidence from an in vivo PET study. Journal of Neuroinflammation, 2020, 17, 5.	3.1	21
12	NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Molecular Neurobiology, 2020, 57, 5247-5262.	1.9	18
13	Biomarkers in Alzheimer disease: are we there yet?. Revista Brasileira De Psiquiatria, 2020, 42, 337-339.	0.9	10
14	Imipramine treatment reverses depressive- and anxiety-like behaviors, normalize adrenocorticotropic hormone, and reduces interleukin-11² in the brain of rats subjected to experimental periapical lesion. Pharmacological Reports, 2019, 71, 24-31.	1.5	13
15	Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. Journal of Psychiatric Research, 2018, 100, 71-83.	1.5	54
16	Biomarkers of Delirium in a Low-Risk Community-Acquired Pneumonia-Induced Sepsis. Molecular Neurobiology, 2017, 54, 722-726.	1.9	24
17	Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis. Journal of Neuroimmunology, 2017, 305, 167-171.	1.1	21
18	Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life. Neuroscience, 2017, 353, 17-25.	1.1	47

JAQUELINE S GENEROSO

#	Article	IF	CITATIONS
19	Temporal changes of oxidative stress markers in Escherichia coli K1-induced experimental meningitis in a neonatal rat model. Neuroscience Letters, 2017, 653, 288-295.	1.0	12
20	Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model. Mediators of Inflammation, 2017, 2017, 1-8.	1.4	16
21	Congenital Muscular Dystrophy 1D Causes Matrix Metalloproteinase Activation And Blood-Brain Barrier Impairment. Current Neurovascular Research, 2017, 14, 60-64.	0.4	3
22	Exposure to Perinatal Infections and Bipolar Disorder: A Systematic Review. Current Molecular Medicine, 2016, 16, 106-118.	0.6	29
23	Depression-Like Adult Behaviors may be a Long-Term Result of Experimental Pneumococcal Meningitis in Wistar Rats Infants. Neurochemical Research, 2016, 41, 2771-2778.	1.6	14
24	Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Molecular Neurobiology, 2016, 53, 1770-1781.	1.9	55
25	Does Infection-Induced Immune Activation Contribute to Dementia?. , 2015, 6, 342.		34
26	Targets for adjunctive therapy in pneumococcal meningitis. Journal of Neuroimmunology, 2015, 278, 262-270.	1.1	21
27	Sodium Butyrate Prevents Memory Impairment by Re-establishing BDNF and GDNF Expression in Experimental Pneumococcal Meningitis. Molecular Neurobiology, 2015, 52, 734-740.	1.9	82
28	Folic acid prevented cognitive impairment in experimental pneumococcal meningitis. Journal of Neural Transmission, 2015, 122, 643-651.	1.4	14
29	Interleukin-1β Receptor Antagonism Prevents Cognitive Impairment Following Experimental Bacterial Meningitis. Current Neurovascular Research, 2015, 12, 253-261.	0.4	13
30	Association between Experimental Bacterial Meningitis and Periapical Lesion. Journal of Clinical and Diagnostic Research JCDR, 2015, 9, DF01-3.	0.8	0
31	Environmental enrichment restores cognitive deficits induced by experimental childhood meningitis. Revista Brasileira De Psiquiatria, 2014, 36, 322-329.	0.9	12
32	Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Translational Research, 2014, 163, 503-513.	2.2	21
33	Klebsiella pneumoniae meningitis induces memory impairment and increases pro-inflammatory host response in the central nervous system of Wistar rats. Journal of Medical Microbiology, 2014, 63, 111-117.	0.7	7
34	Vitamin B6 prevents cognitive impairment in experimental pneumococcal meningitis. Experimental Biology and Medicine, 2014, 239, 1360-1365.	1.1	15
35	Inhibition of matrix metalloproteinases-2 and -9 prevents cognitive impairment induced by pneumococcal meningitis in Wistar rats. Experimental Biology and Medicine, 2014, 239, 225-231.	1.1	33
36	Neonatal Escherichia coli K1 meningitis causes learning and memory impairments in adulthood. Journal of Neuroimmunology, 2014, 272, 35-41.	1.1	20

#	Article	IF	CITATIONS
37	Protection of Blood Brain Barrier Integrity and Modulation of Inflammatory Mediators During Treatment of Pneumococcal Meningitis with Daptomycin or Ceftriaxone. Current Neurovascular Research, 2014, 11, 210-222.	0.4	4
38	Evaluation of energetic metabolism in the rat brain after meningitis induction by <i>Klebsiella pneumoniae</i> . Acta Neuropsychiatrica, 2013, 25, 95-100.	1.0	1
39	Attenuation of cognitive impairment by the nonbacteriolytic antibiotic daptomycin in Wistar rats submitted to pneumococcal meningitis. BMC Neuroscience, 2013, 14, 42.	0.8	20
40	Inhibition of indoleamine 2,3-dioxygenase prevented cognitive impairment in adult Wistar rats subjected to pneumococcal meningitis. Translational Research, 2013, 162, 390-397.	2.2	26
41	Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae. Brain Research Bulletin, 2013, 92, 56-59.	1.4	17
42	Pathophysiology of Bacterial Infection of the Central Nervous System and its Putative Role in the Pathogenesis of Behavioral Changes. Revista Brasileira De Psiquiatria, 2013, 35, 81-87.	0.9	38
43	Pathophysiology of neonatal acute bacterial meningitis. Journal of Medical Microbiology, 2013, 62, 1781-1789.	0.7	73
44	Role of Oxidative Stress in the Pathophysiology of Pneumococcal Meningitis. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-7.	1.9	35
45	Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis. European Journal of Pharmacology, 2012, 697, 158-164.	1.7	61
46	Antioxidant treatment prevents cognitive impairment and oxidative damage in pneumococcal meningitis survivor rats. Metabolic Brain Disease, 2012, 27, 587-593.	1.4	14
47	Circulating concentrations, cerebral output of the CINC-1 and blood–brain barrier disruption in Wistar rats after pneumococcal meningitis induction. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 2005-2009.	1.3	24
48	Brain–blood barrier breakdown and pro-inflammatory mediators in neonate rats submitted meningitis by Streptococcus pneumoniae. Brain Research, 2012, 1471, 162-168.	1.1	35
49	Pathophysiology of acute meningitis caused by Streptococcus pneumoniae and adjunctive therapy approaches. Arquivos De Neuro-Psiquiatria, 2012, 70, 366-372.	0.3	39
50	Microbiological evaluation of bristles of frequently used toothbrushes. Dental Press Journal of Orthodontics, 2012, 17, 72-76.	0.2	11
51	Imipramine reverses depressive-like parameters in pneumococcal meningitis survivor rats. Journal of Neural Transmission, 2012, 119, 653-660.	1.4	12
52	Increased Na ⁺ ,K ⁺ -ATPase activity in the rat brain after meningitis induction by <i>Streptococcus pneumoniae</i> . Acta Neuropsychiatrica, 2012, 24, 301-305.	1.0	0
53	Acetylcholinesterase activity in the rat brain after pneumococcal meningitis. Microbiology and Immunology, 2012, 56, 191-194.	0.7	0
54	Dexamethasone Treatment Reverses Cognitive Impairment but Increases Brain Oxidative Stress in Rats Submitted to Pneumococcal Meningitis. Oxidative Medicine and Cellular Longevity, 2011, 2011, 1-7.	1.9	8

JAQUELINE S GENEROSO

#	Article	IF	CITATIONS
55	A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. Journal of Neuroimmunology, 2011, 233, 12-17.	1.1	33
56	Oxidative Stress, Cytokine/Chemokine and Disruption of Blood–Brain Barrier in Neonate Rats After Meningitis by Streptococcus agalactiae. Neurochemical Research, 2011, 36, 1922-1930.	1.6	50
57	Time-dependent behavioral recovery after pneumococcal meningitis in rats. Journal of Neural Transmission, 2010, 117, 819-826.	1.4	23
58	Correlation between behavioral deficits and decreased brain-derived neurotrofic factor in neonatal meningitis. Journal of Neuroimmunology, 2010, 223, 73-76.	1.1	32
59	Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae. Neuroscience Letters, 2010, 478, 93-96.	1.0	29
60	Depressive-like-behavior and proinflamatory interleukine levels in the brain of rats submitted to pneumococcal meningitis. Brain Research Bulletin, 2010, 82, 243-246.	1.4	22
61	Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis.	1.4	19