List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454338/publications.pdf Version: 2024-02-01

lu gi lu i

#	Article	IF	CITATIONS
1	Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122.	12.8	1,232
2	Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 2018, 5, 1700322.	11.2	1,043
3	A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 2021, 59, 83-99.	12.9	768
4	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	9.1	738
5	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy and Environmental Science, 2014, 7, 3709-3719.	30.8	557
6	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	9.1	493
7	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 5794-5800.	21.0	450
8	Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano, 2015, 9, 5198-5207.	14.6	441
9	Selfâ€Assembly of Honeycombâ€like MoS ₂ Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithiumâ€lon Storage. Advanced Materials, 2014, 26, 7162-7169.	21.0	408
10	A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film. Nano Letters, 2014, 14, 7180-7187.	9.1	346
11	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	19.5	296
12	Progress in aqueous rechargeable batteries. Green Energy and Environment, 2018, 3, 20-41.	8.7	255
13	Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy, 2014, 7, 151-160.	16.0	245
14	Porous α-Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364-372.	16.0	241
15	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	13.8	204
16	Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2013, 2, 377-386.	16.0	200
17	MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage. Nano Energy, 2016, 20, 1-10.	16.0	178
18	Vanadateâ€Based Materials for Liâ€Ion Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials, 2019, 9, 1803324.	19.5	168

#	Article	IF	CITATIONS
19	TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105-112.	16.0	165
20	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	30.8	164
21	Platinum Modulates Redox Properties and 5â€Hydroxymethylfurfural Adsorption Kinetics of Ni(OH) ₂ for Biomass Upgrading. Angewandte Chemie - International Edition, 2021, 60, 22908-22914.	13.8	154
22	A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Advances, 2013, 3, 11745.	3.6	142
23	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. Advanced Energy Materials, 2020, 10, 1903780.	19.5	138
24	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
25	Improving Polysulfides Adsorption and Redox Kinetics by the Co ₄ N Nanoparticle/Nâ€Doped Carbon Composites for Lithium‣ulfur Batteries. Small, 2019, 15, e1901454.	10.0	130
26	Coupling Glucoseâ€Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Advanced Materials, 2021, 33, e2104791.	21.0	126
27	Aqueous Rechargeable Alkaline Co _{<i>x</i>} Ni _{2–<i>x</i>} S ₂ /TiO ₂ Battery. ACS Nano, 2016, 10, 1007-1016.	14.6	123
28	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	14.6	116
29	Rapid Pseudocapacitive Sodiumâ€ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays. Advanced Functional Materials, 2017, 27, 1606232.	14.9	108
30	A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films. Journal of Physical Chemistry C, 2010, 114, 19614-19620.	3.1	103
31	Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23283-23288.	10.3	103
32	Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy, 2013, 2, 726-732.	16.0	102
33	Understanding the Synergistic Effects and Structural Evolution of Co(OH) ₂ and Co ₃ O ₄ toward Boosting Electrochemical Charge Storage. Advanced Functional Materials, 2022, 32, 2108644.	14.9	102
34	Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. Nanoscale, 2011, 3, 3616.	5.6	99
35	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	14.6	95
36	Doubleâ€Shelled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800621.	11.2	83

#	Article	IF	CITATIONS
37	Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	80
38	Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy, 2012, 1, 723-731.	16.0	78
39	Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction. Scientific Reports, 2015, 5, 10389.	3.3	77
40	High-Crystallinity Urchin-like VS ₄ Anode for High-Performance Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 14727-14734.	8.0	74
41	Facile fabrication of hierarchical ZnCo ₂ O ₄ /NiO core/shell nanowire arrays with improved lithium-ion battery performance. Nanoscale, 2014, 6, 6563-6568.	5.6	73
42	High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon. Carbon, 2020, 164, 1-11.	10.3	71
43	High-rate and ultra-stable Na-ion storage for Ni3S2 nanoarrays via self-adaptive pseudocapacitance. Electrochimica Acta, 2018, 265, 709-716.	5.2	70
44	Optimized Kinetics Match and Charge Balance Toward Potassium Ion Hybrid Capacitors with Ultrahigh Energy and Power Densities. Small, 2020, 16, e2003724.	10.0	62
45	Self-adaptive electrochemical reconstruction boosted exceptional Li ⁺ ion storage in a Cu ₃ P@C anode. Journal of Materials Chemistry A, 2018, 6, 18821-18826.	10.3	60
46	Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage. Nano-Micro Letters, 2021, 13, 192.	27.0	60
47	Inorganic Solid Electrolytes for Allâ€Solidâ€State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Advanced Functional Materials, 2021, 31, 2008165.	14.9	55
48	MoS ₂ architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 17534-17543.	10.3	51
49	1D nanobar-like LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. Journal of Materials Chemistry A, 2017, 5, 15669-15675.	10.3	51
50	A Depth-Profiling Study on the Solid Electrolyte Interface: Bis(fluorosulfuryl)imide Anion toward Improved K ⁺ Storage. ACS Applied Energy Materials, 2019, 2, 7942-7951.	5.1	51
51	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	21.0	47
52	Morphology controlled lithium storage in Li ₃ VO ₄ anodes. Journal of Materials Chemistry A, 2018, 6, 456-463.	10.3	46
53	Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54637-54643.	8.0	45
54	Active sites-enriched hierarchical MoS ₂ nanotubes: highly active and stable architecture for boosting hydrogen evolution and lithium storage. Journal of Materials Chemistry A, 2016, 4, 7565-7572.	10.3	44

#	Article	IF	CITATIONS
55	Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale, 2014, 6, 5691-5697.	5.6	42
56	Microstructureâ€Ðependent K ⁺ Storage in Porous Hard Carbon. Small, 2021, 17, e2100397.	10.0	42
57	Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage. Advanced Energy Materials, 2022, 12, 2102053.	19.5	41
58	Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Throughâ€Plane Conductivity of 3D Hybridized Structure. Small, 2020, 16, e1903315.	10.0	40
59	Synergistic capacitive behavior between polyaniline and carbon black. Electrochimica Acta, 2017, 230, 236-244.	5.2	38
60	Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8955-8964.	8.0	38
61	New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design. Journal of Power Sources, 2019, 433, 126681.	7.8	38
62	Nitrogen configuration dependent holey active sites toward enhanced K+ storage in graphite foam. Journal of Power Sources, 2019, 419, 82-90.	7.8	36
63	Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene. RSC Advances, 2013, 3, 11601.	3.6	35
64	Superior Li-ion storage of VS ₄ nanowires anchored on reduced graphene. Nanoscale, 2019, 11, 9556-9562.	5.6	35
65	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	3.4	34
66	N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li-S batteries via triple synergistic effects. Journal of Power Sources, 2020, 455, 227959.	7.8	34
67	Carbon Nanotube-Based Materials for Fuel Cell Applications. Australian Journal of Chemistry, 2012, 65, 1213.	0.9	31
68	Confining Sb nanoparticles in bamboo-like hierarchical porous aligned carbon nanotubes for use as an anode for sodium ion batteries with ultralong cycling performance. Journal of Materials Chemistry A, 2021, 9, 2152-2160.	10.3	28
69	Constructing high-performance N-doped carbon nanotubes anode by tuning interlayer spacing and the compatibility mechanism with ether electrolyte for sodium-ion batteries. Chemical Engineering Journal, 2022, 446, 137427.	12.7	28
70	Electrocatalytically Active Graphene supported MMo Carbides (M Ni, Co) for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 216, 246-252.	5.2	27
71	Cobalt sulfide nanoflakes grown on graphite foam for Na-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2020, 8, 14900-14907.	10.3	27
72	Aligned InS Nanorods for Efficient Electrocatalytic Carbon Dioxide Reduction. ACS Applied Materials & Interfaces, 2022, 14, 25257-25266.	8.0	25

#	Article	IF	CITATIONS
73	Space-confinement and chemisorption co-involved in encapsulation of sulfur for lithium–sulfur batteries with exceptional cycling stability. Journal of Materials Chemistry A, 2017, 5, 24602-24611.	10.3	24
74	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	2.0	24
75	Synergistic Effect, Structural and Morphology Evolution, and Doping Mechanism of Spherical Brâ€Doped Na ₃ V ₂ (PO ₄) ₂ F ₃ /C toward Enhanced Sodium Storage. Small, 2022, 18, e2201719.	10.0	24
76	Lotus root-like porous carbon for potassium ion battery with high stability and rate performance. Journal of Power Sources, 2020, 466, 228303.	7.8	22
77	Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Materials, 2018, 5, 031005.	4.4	20
78	Fe/Fe ₃ C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24710-24722.	8.0	19
79	Simultaneous Immobilization and Conversion of Polysulfides on Co ₃ O ₄ –CoN Heterostructured Mediators toward High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 2570-2578.	5.1	18
80	Insights into the sodium storage mechanism of Bi ₂ Te ₃ nanosheets as superior anodes for sodium-ion batteries. Nanoscale, 2022, 14, 1755-1766.	5.6	18
81	Paper-like TiO2/graphene-carbon nanotube hybrid electrode with high mass loading: Toward high-performance lithium ion battery. Journal of Alloys and Compounds, 2018, 749, 697-704.	5.5	17
82	Intercalation-deposition mechanism induced by aligned carbon fiber toward dendrite-free metallic potassium batteries. Energy Storage Materials, 2022, 51, 122-129.	18.0	17
83	Distinctive Formation of Bifunctional ZnCoS-rGO 3D Hollow Microsphere Flowers with Excellent Energy Storage Performances. Chemistry of Materials, 2022, 34, 5896-5911.	6.7	15
84	Multifunctional Thermal Barrier Application Composite with SiC Nanowires Enhanced Structural Health Monitoring Sensitivity and Interface Performance. ACS Applied Materials & Interfaces, 2018, 10, 27955-27964.	8.0	14
85	Mechanistic insights into the pseudocapacitive performance of bronze-type vanadium dioxide with mono/multi-valent cations intercalation. Journal of Materials Chemistry A, 2022, 10, 10439-10451.	10.3	14
86	A facile strategy towards high capacity and stable Sn anodes for Li-ion battery: Dual-confinement via Sn@SnO2 core-shell nanoparticles embedded in 3D graphitized porous carbon network. Journal of Alloys and Compounds, 2021, 857, 157920.	5.5	13
87	Transition metal carbonate anodes for Li-ion battery: fundamentals, synthesis and modification. Journal of Energy Chemistry, 2022, 70, 95-120.	12.9	12
88	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .	0.1	10
89	Graphitic carbon nitride-derived high lithium storage capacity graphite material with regular layer structure and the structural evolution mechanism. Electrochimica Acta, 2022, 409, 139985.	5.2	10
90	Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite. Journal of Energy Chemistry, 2022, 71, 344-350.	12.9	9

#	Article	IF	CITATIONS
91	Platinum Modulates Redox Properties and 5â€Hydroxymethylfurfural Adsorption Kinetics of Ni(OH) ₂ for Biomass Upgrading. Angewandte Chemie, 2021, 133, 23090-23096.	2.0	8
92	Electrochemical Exfoliation Synthesis of Graphene. Springer Theses, 2017, , 39-50.	0.1	6
93	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970081.	19.5	5
94	Unraveling the effects of anions in NixAy@CC (A=O, S, P) on Li-sulfur batteries. Materials Today Nano, 2021, 13, 100106.	4.6	5
95	Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy. Green Energy and Environment, 2023, 8, 1371-1379.	8.7	4
96	Graphene Foam (GF)/Carbon Nanotubes (CNTs) Hybrid Film-Based High-Performance Flexible Asymmetric Supercapacitors. Springer Theses, 2017, , 65-83.	0.1	2
97	Introduction and Literature Background. Springer Theses, 2017, , 1-37.	0.1	1
98	High-Performance Graphene Foam/Fe3O4 Hybrid Electrode for Lithium Ion Battery. Springer Theses, 2017, , 51-63.	0.1	0
99	Graphene Foam/Carbon Nanotubes Hybrid Film Based Flexible Alkaline Rechargeable Ni/Fe Battery. Springer Theses, 2017, , 85-100.	0.1	0
100	Unraveling the Potassium Ion Storage Mechanism in Graphite Foam. ECS Meeting Abstracts, 2017, , .	0.0	0