
Atsushi Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete nucleotide sequence of the Cryptomeria japonicaD. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biology, 2008, 8, 70.	3.6	146
2	Characterization of resistance to pine wood nematode infection in Pinus thunbergiiusing suppression subtractive hybridization. BMC Plant Biology, 2012, 12, 13.	3.6	92
3	Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics, 2014, 15, 219.	2.8	48
4	Identification of novel putative causative genes and genetic marker for male sterility in Japanese cedar (Cryptomeria japonica D.Don). BMC Genomics, 2018, 19, 277.	2.8	45
5	Demonstration of Genome-Wide Association Studies for Identifying Markers for Wood Property and Male Strobili Traits in Cryptomeria japonica. PLoS ONE, 2013, 8, e79866.	2.5	44
6	Isolation and characterization of microsatellite loci from Larix kaempferi. Molecular Ecology Notes, 2006, 6, 664-666.	1.7	41
7	Extended Linkage Disequilibrium in Noncoding Regions in a Conifer, <i>Cryptomeria japonica</i> . Genetics, 2012, 190, 1145-1148.	2.9	34
8	Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation. Journal of Plant Research, 2018, 131, 297-305.	2.4	29
9	A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi. Current Genetics, 2009, 55, 311-321.	1.7	24
10	Simultaneous Evaluation of Paternal and Maternal Immigrant Gene Flow and the Implications for the Overall Genetic Composition of Pinus densiflora Dispersed Seeds. Journal of Heredity, 2010, 101, 144-153.	2.4	24
11	Comparison of histological responses and tissue damage expansion between resistant and susceptible <i>Pinus thunbergii</i> infected with pine wood nematode <i>Bursaphelenchus xylophilus</i> . Journal of Forest Research, 2014, 19, 285-294.	1.4	22
12	Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (<i>Cryptomeria japonica</i>). Tree Physiology, 2016, 36, 653-666.	3.1	21
13	Population genetic structure and the effect of historical human activity on the genetic variability of Cryptomeria japonica core collection, in Japan. Tree Genetics and Genomes, 2014, 10, 1257-1270.	1.6	17
14	Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. BMC Plant Biology, 2018, 18, 201.	3.6	17
15	Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii). BMC Plant Biology, 2019, 19, 424.	3.6	17
16	Isolation and characterization of microsatellite markers from <i>Robinia pseudoacacia</i> L Molecular Ecology Resources, 2009, 9, 850-852.	4.8	16
17	Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica(L.f.) D.Don). BMC Plant Biology, 2014, 14, 308.	3.6	16
18	Construction of a core collection and evaluation of genetic resources forCryptomeria japonica(Japanese cedar). Journal of Forest Research, 2015, 20, 186-196.	1.4	16

Atsushi Watanabe

#	Article	IF	CITATIONS
19	Potential of Genome-Wide Studies in Unrelated Plus Trees of a Coniferous Species, Cryptomeria japonica (Japanese Cedar). Frontiers in Plant Science, 2018, 9, 1322.	3.6	16
20	The gene expression analysis of Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignol-transporter candidates. Journal of Wood Science, 2018, 64, 477-484.	1.9	15
21	Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC Plant Biology, 2014, 14, 308.	3.6	15
22	Use of different seed tissues for separate biparentage identification of dispersed seeds in conifers: confirmations and practices for gene flow in <i>Pinus densiflora</i> . Canadian Journal of Forest Research, 2007, 37, 2022-2030.	1.7	14
23	The origin of wild populations of Toxicodendron succedaneum on mainland Japan revealed by genetic variation in chloroplast and nuclear DNA. Journal of Plant Research, 2018, 131, 225-238.	2.4	14
24	Isolation and characterization of microsatellite loci from Quercus mongolica var. crispula. Molecular Ecology Notes, 2006, 6, 695-697.	1.7	13
25	Biological Activities of Extracts from Different Parts of <i>Cryptomeria japonica</i> . Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	13
26	Historical seed use and transfer affects geographic specificity in genetic diversity and structure of old planted Pinus thunbergii populations. Forest Ecology and Management, 2018, 408, 211-219.	3.2	13
27	The Evaluation of Wood Properties of Standing Trees in Sugi (Cryptomeria japonica) Plus Tree Clones Selected in Kanto Breeding Region. Mokuzai Gakkai Shi, 2011, 57, 256-264.	0.2	13
28	Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLoS ONE, 2020, 15, e0229843.	2.5	11
29	Spatiotemporal gene expression profiles associated with male strobilus development in Cryptomeria japonica by suppression subtractive hybridization. Breeding Science, 2011, 61, 174-182.	1.9	10
30	Isolation and characterization of microsatellite markers in Melia volkensii Gurke. Conservation Genetics Resources, 2012, 4, 395-398.	0.8	9
31	Phylogeographical structure in Zelkova serrata in Japan and phylogeny in the genus Zelkova using the polymorphisms of chloroplast DNA. Conservation Genetics, 2012, 13, 1109-1118.	1.5	8
32	Influence of Long-Distance Seed Dispersal on the Genetic Diversity of Seed Rain in Fragmented Pinus densiflora Populations Relative to Pollen-Mediated Gene Flow. Journal of Heredity, 2013, 104, 465-475.	2.4	8
33	Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2. Tree Physiology, 2017, 37, 733-743.	3.1	8
34	Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings. European Journal of Plant Pathology, 2020, 156, 581-590.	1.7	8
35	Evaluation of Male Flower Production in Sugi (Cryptomeria japonica) Plus Tree Clones Selected from a Kanto Breeding Region. Journal of the Japanese Forest Society, 2013, 95, 156-162.	0.2	8
36	Genetic structures of Calophyllum inophyllum L., a tree employing sea-drift seed dispersal in the northern extreme of its distribution. Annals of Forest Science, 2014, 71, 575-584.	2.0	6

Atsushi Watanabe

#	Article	IF	CITATIONS
37	Isolation and characterization of microsatellite markers for <i>Thujopsis dolabrata</i> var. <i>hondai</i> (Cupressaceae) ¹ . American Journal of Botany, 2012, 99, e317-9.	1.7	5
38	Japanese beech (<i>Fagus crenata</i>) plantations established from seedlings of non-native genetic lineages. Journal of Forest Research, 2012, 17, 116-120.	1.4	5
39	The promoter of an A9 homolog from the conifer Cryptomeria japonica imparts male strobilus-dominant expression in transgenic trees. Plant Cell Reports, 2013, 32, 319-328.	5.6	5
40	RAPD Variation among Quercus Species Distributed in Temperate Deciduous Forests of the Hiruzen Mountains. Journal of Forest Research, 1997, 2, 121-123.	1.4	4
41	Development and Characterization of Microsatellites, Clone Identification, and Determination of Genetic Relationships among Rhus succedanea L. Individuals. Japanese Society for Horticultural Science, 2010, 79, 141-149.	0.8	4
42	Development of tetranucleotide microsatellite markers in Pinus kesiya Royle ex Gordon. Conservation Genetics Resources, 2013, 5, 405-407.	0.8	4
43	Isolation and characterization of tetranucleotide microsatellite markers for Pinus merkusii. Conservation Genetics Resources, 2013, 5, 433-436.	0.8	4
44	Analyses of random BAC clone sequences of Japanese cedar, Cryptomeria japonica. Tree Genetics and Genomes, 2015, 11, 1.	1.6	4
45	Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests. Forests, 2020, 11, 955.	2.1	4
46	Effects of Temperature Factors on Resistance against Pine Wood Nematodes in Pinus thunbergii, Based on Multiple Location Sites Nematode Inoculation Tests. Forests, 2020, 11, 922.	2.1	4
47	Application of Terrestrial LiDAR for Forest Tree Breeding:. Journal of the Japanese Forest Society, 2015, 97, 290-295.	0.2	3
48	Spatiotemporal analysis of pine wilt disease: Relationship between pinewood nematode distribution and defence response in <i>Pinus thunbergii</i> seedlings. Forest Pathology, 2019, 49, e12518.	1.1	3
49	Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests, 2021, 12, 72.	2.1	3
50	The Effect of Genotype and Planting Density on the Growth Patterns and Selection of Local Varieties of Sugi (<i>Cryptomeria japonica</i>). Journal of the Japanese Forest Society, 2016, 98, 45-52.	0.2	3
51	Genetic diversity ofPinus densiflorapollen flowing over fragmented populations during a mating season. Journal of Forest Research, 2012, 17, 488-498.	1.4	2
52	Development and characterization of EST-SSR markers for <i>Pinus thunbergii</i> . Journal of Forest Research, 2021, 26, 464-467.	1.4	2
53	Development of Simple DNA Markers for Selecting Trees with the Male-sterile Gene of <i>Cryptomeria japonica</i> "Sosyun― Journal of the Japanese Forest Society, 2019, 101, 155-162.	0.2	2
54	Geographical cline and interâ€seaside difference in cone characteristics related to climatic conditions of old planted Pinus thunbergii populations throughout Japan. Plant Species Biology, 2021, 36, 218-229.	1.0	2

#	Article	IF	CITATIONS
55	Highly polymorphic nuclear microsatellite markers reveal detailed patterns of genetic variation in natural populations of Yezo spruce in Hokkaido. Journal of Forest Research, 2015, 20, 301-307.	1.4	1
56	Effects of Physical Characteristics of Rooting Media on the Rooting of <i>Cryptomeria japonica</i> Cuttings. Journal of the Japanese Forest Society, 2016, 98, 265-272.	0.2	1
57	Genetic Variation of Root Traits of Cuttings and Their Relation to Early Shoot Growth in <i>Cryptomeria japonica</i> Journal of the Japanese Forest Society, 2018, 100, 218-223.	0.2	1
58	Comparisons of Chloroplast Haplotypes in Toxicodendron succedaneum (L.) Kuntze among Local Cultivars and Candidates for Superior Trees in Japan and Wild Individuals from the Asian Continent Okinawa Island Journal of the Japanese Forest Society, 2011, 93, 200-204.	0.2	1
59	Evaluation of Genetic Diversity of <i>Toxicodendron vernicifluum</i> Planted in Japan Using EST-SSR and Genetic SSR Markers. Journal of the Japanese Forest Society, 2019, 101, 298-304.	0.2	1
60	Characterization of Candidate Gene and Abnormal of Carbohydrate Metabolism during Pollen Development in a Male Sterility Clone, Sosyun. Journal of the Japanese Forest Society, 2020, 102, 191-197.	0.2	0