
Stefano Curtarolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7454092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data-Driven Quest for Two-Dimensional Non-van der Waals Materials. Nano Letters, 2022, 22, 989-997.	9.1	35
2	Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping. Frontiers in Physics, 2022, 10, .	2.1	6
3	Two-Layer High-Throughput: Effective Mass Calculations Including Warping. Engineering, 2022, 10, 74-80.	6.7	2
4	High-entropy ceramics: Propelling applications through disorder. MRS Bulletin, 2022, 47, 194-202.	3.5	26
5	The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
6	The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie, 2022, 134, .	2.0	3
7	Networks of materials: Construction and structural analysis. AICHE Journal, 2021, 67, e17051.	3.6	2
8	Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy. Npj Computational Materials, 2021, 7, .	8.7	186
9	AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes. Npj Computational Materials, 2021, 7, .	8.7	28
10	Enhancing ductility in bulk metallic glasses by straining during cooling. Communications Materials, 2021, 2, .	6.9	16
11	Automated coordination corrected enthalpies with AFLOW-CCE. Physical Review Materials, 2021, 5, .	2.4	9
12	Machine learning for alloys. Nature Reviews Materials, 2021, 6, 730-755.	48.7	202
13	OPTIMADE, an API for exchanging materials data. Scientific Data, 2021, 8, 217.	5.3	49
14	Tin-pest problem as a test of density functionals using high-throughput calculations. Physical Review Materials, 2021, 5, .	2.4	7
15	Entropy Landscaping of Highâ€Entropy Carbides. Advanced Materials, 2021, 33, e2102904.	21.0	38
16	Settling the matter of the role of vibrations in the stability of high-entropy carbides. Nature Communications, 2021, 12, 5747.	12.8	28
17	The AFLOW Library of Crystallographic Prototypes: Part 3. Computational Materials Science, 2021, 199, 110450.	3.0	16
18	Advanced modeling of materials with PAOFLOW 2.0: New features and software design. Computational Materials Science, 2021, 200, 110828.	3.0	21

#	Article	IF	CITATIONS
19	On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020, 11, 5966.	12.8	167
20	Vibrational spectral fingerprinting for chemical recognition of biominerals. ChemPhysChem, 2020, 21, 770-778.	2.1	9
21	Spin Hall effect in prototype Rashba ferroelectrics GeTe and SnTe. Npj Computational Materials, 2020, 6, .	8.7	26
22	First Principles Investigation of Cold Curves of Metals. Israel Journal of Chemistry, 2020, 60, 897-904.	2.3	1
23	High-entropy ceramics. Nature Reviews Materials, 2020, 5, 295-309.	48.7	902
24	Ultrathin SnTe films as a route towards all-in-one spintronics devices. 2D Materials, 2020, 7, 025026.	4.4	24
25	High-Throughput Computational Search for Half-Metallic Oxides. Molecules, 2020, 25, 2010.	3.8	1
26	Discovery of high-entropy ceramics via machine learning. Npj Computational Materials, 2020, 6, .	8.7	133
27	QSAR without borders. Chemical Society Reviews, 2020, 49, 3525-3564.	38.1	427
28	High-throughput study of the static dielectric constant at high temperatures in oxide and fluoride cubic perovskites. Physical Review Materials, 2020, 4, .	2.4	8
29	The AFLOW Fleet for Materials Discovery. , 2020, , 1785-1812.		4
30	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	2.8	236
31	Unavoidable disorder and entropy in multi-component systems. Npj Computational Materials, 2019, 5, .	8.7	61
32	Metallic glasses for biodegradable implants. Acta Materialia, 2019, 176, 297-305.	7.9	25
33	Thermoelectric Properties of Minerals with the Mawsonite Structure. ACS Applied Energy Materials, 2019, 2, 8068-8078.	5.1	9
34	Predicting superhard materials via a machine learning informed evolutionary structure search. Npj Computational Materials, 2019, 5, .	8.7	74
35	Mechanical Properties of Chemically Modified Clay. Scientific Reports, 2019, 9, 13698.	3.3	9
36	The AFLOW Library of Crystallographic Prototypes: Part 2. Computational Materials Science, 2019, 161, S1-S1011.	3.0	70

#	Article	IF	CITATIONS
37	Coordination corrected ab initio formation enthalpies. Npj Computational Materials, 2019, 5, .	8.7	38
38	Giant spin Hall effect in two-dimensional monochalcogenides. 2D Materials, 2019, 6, 025012.	4.4	30
39	The AFLOW Fleet for Materials Discovery. , 2019, , 1-28.		0
40	Parametrically constrained geometry relaxations for high-throughput materials science. Npj Computational Materials, 2019, 5, .	8.7	13
41	Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 2019, 166, 271-280.	7.9	422
42	XtalOptÂVersion r12: An open-source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2019, 237, 274-275.	7.5	37
43	AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids. Physical Review Materials, 2019, 3, .	2.4	8
44	The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials. Inorganic Chemistry, 2018, 57, 653-667.	4.0	4
45	<i>AFLOW-SYM</i> : platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 184-203.	0.1	44
46	Spinodal Superlattices of Topological Insulators. Chemistry of Materials, 2018, 30, 2331-2340.	6.7	8
47	PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Computational Materials Science, 2018, 143, 462-472.	3.0	74
48	The AFLOW Fleet for Materials Discovery. , 2018, , 1-28.		9
49	High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018, 9, 4980.	12.8	604
50	Vibrational Properties of Metastable Polymorph Structures by Machine Learning. Journal of Chemical Information and Modeling, 2018, 58, 2460-2466.	5.4	14
51	AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. Journal of Chemical Information and Modeling, 2018, 58, 2477-2490.	5.4	69
52	Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery. MRS Bulletin, 2018, 43, 670-675.	3.5	35
53	AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Computational Materials Science, 2018, 152, 134-145.	3.0	72
54	The search for high entropy alloys: A high-throughput ab-initio approach. Acta Materialia, 2018, 159, 364-383.	7.9	142

#	Article	IF	CITATIONS
55	Machine learning modeling of superconducting critical temperature. Npj Computational Materials, 2018, 4, .	8.7	274
56	SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2018, 2, .	2.4	349
57	Accelerated discovery of new magnets in the Heusler alloy family. Science Advances, 2017, 3, e1602241.	10.3	197
58	How Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids. Chemistry of Materials, 2017, 29, 6220-6227.	6.7	103
59	The AFLOW Library of Crystallographic Prototypes: Part 1. Computational Materials Science, 2017, 136, S1-S828.	3.0	147
60	An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library. Npj Computational Materials, 2017, 3, .	8.7	65
61	Systematic Band Gap Tuning of BaSnO ₃ via Chemical Substitutions: The Role of Clustering in Mixed-Valence Perovskites. Chemistry of Materials, 2017, 29, 9378-9385.	6.7	27
62	The effect of lattice stability determination on the computational phase diagrams of intermetallic alloys. Journal of Alloys and Compounds, 2017, 728, 314-321.	5.5	6
63	AFLUX: The LUX materials search API for the AFLOW data repositories. Computational Materials Science, 2017, 137, 362-370.	3.0	56
64	A computational high-throughput search for new ternary superalloys. Acta Materialia, 2017, 122, 438-447.	7.9	70
65	High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity. Scripta Materialia, 2017, 129, 88-93.	5.2	40
66	Universal fragment descriptors for predicting properties of inorganic crystals. Nature Communications, 2017, 8, 15679.	12.8	435
67	The Maximum Edge Weight Clique Problem: Formulations and Solution Approaches. Springer Optimization and Its Applications, 2017, , 217-237.	0.9	9
68	AFLOWÏ€: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136, 76-84.	3.0	70
69	Improved electronic structure and magnetic exchange interactions in transition metal oxides. Journal of Physics Condensed Matter, 2017, 29, 444003.	1.8	28
70	Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 2017, 1, .	2.4	47
71	Molybdenum-titanium phase diagram evaluated from <i>ab initio</i> calculations. Physical Review Materials, 2017, 1, .	2.4	11
72	All The Catalytic Active Sites of MoS ₂ for Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 16632-16638.	13.7	664

#	Article	IF	CITATIONS
73	High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites. Physical Review X, 2016, 6, .	8.9	61
74	High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Computational Materials Science, 2016, 125, 82-91.	3.0	51
75	Numerical Algorithm for Pólya Enumeration Theorem. Journal of Experimental Algorithmics, 2016, 21, 1-17.	1.0	1
76	Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics. Journal of Electronic Materials, 2016, 45, 5526-5532.	2.2	9
77	Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach. Chemistry of Materials, 2016, 28, 6484-6492.	6.7	78
78	Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films. Acta Materialia, 2016, 121, 68-77.	7.9	64
79	Accurate tight-binding Hamiltonian matrices from <i>ab initio</i> calculations: Minimal basis sets. Physical Review B, 2016, 93, .	3.2	43
80	Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Physical Review B, 2016, 93, .	3.2	40
81	Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nature Communications, 2016, 7, 12315.	12.8	104
82	Accurate <i>ab initio</i> tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles. Physical Review B, 2016, 94, .	3.2	25
83	First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides. Physical Chemistry Chemical Physics, 2016, 18, 5005-5011.	2.8	13
84	The AFLOW standard for high-throughput materials science calculations. Computational Materials Science, 2015, 108, 233-238.	3.0	244
85	Finding the stable structures of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>N</mml:mtext><r an<i>ab initio</i>high-throughput approach. Physical Review B, 2015, 91, .</r </mml:msub></mml:mrow></mml:math 	nr al2 mrow	> 5 ≉nml:mr⊳
86	Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: A validation of the ACBNO functional. Physical Review B, 2015, 91, .	3.2	56
87	Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2015, 2, 150009.	5.3	642
88	Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Materials, 2015, 14, 414-420.	27.5	216
89	Reformulation of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi> v < mml:mi> DFT < /mml:mi> < mml:mo> + < /mml:mo> < mml:mi> U < /mml:mi> < /mml:mow a Pseudohybrid Hubbard Density Functional for Accelerated Materials Discovery. Physical Review X, 2015. 5	/>8.9	ath≥as 127

90 Entropy-stabilized oxides. Nature Communications, 2015, 6, 8485.

12.8 1,624

#	Article	IF	CITATIONS
91	Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nature Materials, 2015, 14, 1223-1228.	27.5	587
92	Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints. Chemistry of Materials, 2015, 27, 735-743.	6.7	209
93	Robust topological surface state in Kondo insulator SmB ₆ thin films. Applied Physics Letters, 2014, 105, 222403.	3.3	42
94	Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling. Physical Review X, 2014, 4, .	8.9	210
95	High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Physical Review B, 2014, 90, .	3.2	230
96	A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Computational Materials Science, 2014, 93, 178-192.	3.0	148
97	Infrared Absorption Spectrum of Brushite from First Principles. Chemistry of Materials, 2014, 26, 2934-2942.	6.7	41
98	Low thermal conductivity and triaxial phononic anisotropy of SnSe. Applied Physics Letters, 2014, 105, .	3.3	226
99	Nanograined Halfâ€Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio Highâ€Throughput Statistical Study. Advanced Functional Materials, 2014, 24, 7427-7432.	14.9	117
100	Nonproportionality and Scintillation Responses of LSO:Ce From 4.3 to 300 K. IEEE Transactions on Nuclear Science, 2013, 60, 993-999.	2.0	3
101	Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Physical Review B, 2013, 88, .	3.2	64
102	Characterization of light output and scintillation emission in CsI(Tl), NaI(Tl), andÂLaBr3(Ce) under isostatic pressure. Radiation Measurements, 2013, 56, 70-75.	1.4	11
103	The high-throughput highway to computational materials design. Nature Materials, 2013, 12, 191-201.	27.5	1,475
104	Revealing the Impact of Catalyst Phase Transition on Carbon Nanotube Growth by <i>in Situ</i> Raman Spectroscopy. ACS Nano, 2013, 7, 1100-1107.	14.6	60
105	Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals, Using a Computational First-Principles Approach. Physical Review X, 2013, 3, .	8.9	47
106	Stable ordered structures of binary technetium alloys from first principles. Physical Review B, 2012, 85, .	3.2	14
107	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mn>1</mml:mn><mml:mn>1</mml:mn> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:msub></mml:mrow>	0.2	19
108	structures. Physical Review B, 2012, 85, . Nonproportionality and Scintillation Studies of \${hbox{Eu:}} {hbox{SrI}}_{m 2}\$ From 295 to 5 K. IEEE Transactions on Nuclear Science, 2012, 59, 2052-2056.	2.0	15

#	Article	IF	CITATIONS
109	AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 2012, 58, 218-226.	3.0	898
110	AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 2012, 58, 227-235.	3.0	811
111	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	3.8	59
112	Accelerating disorder–order transitions of FePt by preforming a metastable AgPt phase. Acta Materialia, 2012, 60, 7258-7264.	7.9	15
113	A search model for topological insulators with high-throughput robustness descriptors. Nature Materials, 2012, 11, 614-619.	27.5	244
114	<i>Ab Initio</i> Insights on the Shapes of Platinum Nanocatalysts. ACS Nano, 2011, 5, 247-254.	14.6	44
115	Ordered phases in ruthenium binary alloys from high-throughput first-principles calculations. Physical Review B, 2011, 84, .	3.2	50
116	Ordered Structures in Rhenium Binary Alloys from First-Principles Calculations. Journal of the American Chemical Society, 2011, 133, 158-163.	13.7	62
117	High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials. ACS Combinatorial Science, 2011, 13, 382-390.	3.8	211
118	Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput <i>Ab-Initio</i> Calculations. Physical Review X, 2011, 1, .	8.9	92
119	Revealing low-temperature atomic ordering in bulk Co-Pt with the high-throughput ab-initio method. Applied Physics Letters, 2011, 99, 261902.	3.3	13
120	Density functional study of the L10–αIrV transition in IrV and RhV. Journal of Alloys and Compounds, 2011, 509, 560-567.	5.5	1
121	Gas–Surface Interactions on Quasicrystals. Israel Journal of Chemistry, 2011, 51, 1304-1313.	2.3	1
122	Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins. Advanced Materials, 2011, 23, 550-554.	21.0	91
123	Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84, .	3.2	47
124	Surface segregation in nanoparticles from first principles: The case of FePt. Scripta Materialia, 2010, 62, 179-182.	5.2	49
125	Thermodynamics of carbon in iron nanoparticles at low temperature: Reduced solubility and size-induced nucleation of cementite. Physics Procedia, 2010, 6, 16-26.	1.2	5
126	Hafnium binary alloys from experiments and first principles. Acta Materialia, 2010, 58, 2887-2897.	7.9	102

#	Article	IF	CITATIONS
127	Ordered magnesium-lithium alloys: First-principles predictions. Physical Review B, 2010, 81, .	3.2	33
128	The New Face of Rhodium Alloys: Revealing Ordered Structures from First Principles. Journal of the American Chemical Society, 2010, 132, 833-837.	13.7	64
129	Predictions of the Pt ₈ Ti Phase in Unexpected Systems. Journal of the American Chemical Society, 2010, 132, 6851-6854.	13.7	24
130	Viscous State Effect on the Activity of Fe Nanocatalysts. ACS Nano, 2010, 4, 6950-6956.	14.6	27
131	Uncovering Compounds by Synergy of Cluster Expansion and High-Throughput Methods. Journal of the American Chemical Society, 2010, 132, 4830-4833.	13.7	68
132	High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 2010, 49, 299-312.	3.0	1,140
133	First principles study of Ag, Au, and Cu surface segregation in FePt-L10. Applied Physics Letters, 2010, 97, 221908.	3.3	23
134	Structure maps for hcp metals from first-principles calculations. Physical Review B, 2010, 81, .	3.2	40
135	First-principles solubilities of alkali and alkaline-earth metals in Mg-B alloys. Physical Review B, 2009, 79, .	3.2	19
136	Structures and Topological Transitions of Hydrocarbon Films on Quasicrystalline Surfaces. Physical Review Letters, 2009, 102, 055501.	7.8	8
137	Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials. IEEE Transactions on Nuclear Science, 2009, 56, 2989-2996.	2.0	59
138	Computational Studies of Catalytic Particles for Carbon Nanotube Growth. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1-15.	0.4	37
139	Calculation of solubility in titanium alloys from first principles. Acta Materialia, 2009, 57, 5314-5323.	7.9	21
140	Thermopower of Molecular Junctions: An ab Initio Study. Nano Letters, 2009, 9, 1011-1014.	9.1	91
141	Reduced Carbon Solubility in Fe Nanoclusters and Implications for the Growth of Single-Walled Carbon Nanotubes. Physical Review Letters, 2008, 100, 195502.	7.8	73
142	Thermodynamic stabilities of ternary metal borides: An <i>ab initio</i> guide for synthesizing layered superconductors. Physical Review B, 2008, 78, .	3.2	29
143	Influence of Mo on the Fe:Mo:C nanocatalyst thermodynamics for single-walled carbon nanotube growth. Physical Review B, 2008, 78, .	3.2	24
144	Computational study of the thermal behavior of iron clusters on a porous substrate. Physical Review B, 2008, 77, .	3.2	10

#	Article	IF	CITATIONS
145	Computational Studies of Small Carbon and Iron-Carbon Systems Relevant to Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6170-6177.	0.9	2
146	Search for highTcin layered structures: The case of LiB. Physical Review B, 2007, 75, .	3.2	35
147	Hidden features of the catalyst nanoparticles favorable for single-walled carbon nanotube growth. Applied Physics Letters, 2007, 90, 163120.	3.3	59
148	Size dependent melting mechanisms of iron nanoclusters. Chemical Physics, 2007, 333, 57-62.	1.9	36
149	Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles. Physical Review B, 2007, 75, .	3.2	73
150	Data-Mining-Driven Quantum Mechanics for the Prediction of Structure. MRS Bulletin, 2006, 31, 981-985.	3.5	48
151	Modeling the melting of supported clusters. Applied Physics Letters, 2006, 88, 133110.	3.3	95
152	Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2. Physical Review B, 2006, 73, .	3.2	77
153	Theoretical study of metal borides stability. Physical Review B, 2006, 74, .	3.2	79
154	Xe films on a decagonal Al-Ni-Co quasicrystalline surface. Physical Review B, 2006, 74, .	3.2	19
155	Evolution of Topological Order in Xe Films on a Quasicrystal Surface. Physical Review Letters, 2005, 95, 136104.	7.8	40
156	High-throughput and data mining with ab initio methods. Measurement Science and Technology, 2005, 16, 296-301.	2.6	100
157	Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 163-211.	1.6	313
158	High-throughput ab initio analysis of the Bi–In, Bi–Mg, Bi–Sb, In–Mg, In–Sb, and Mg–Sb systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 155-161.	1.6	40
159	Wetting transition behavior ofXeonCsandCsâ^•graphite. Physical Review B, 2004, 70, .	3.2	15
160	Predicting Crystal Structures with Data Mining of Quantum Calculations. Physical Review Letters, 2003, 91, 135503.	7.8	354
161	Data Mining Approach to Ab-Initio Prediction of Crystal Structure. Materials Research Society Symposia Proceedings, 2003, 804, 305.	0.1	3
162	Dynamics of an Inhomogeneously Coarse Grained Multiscale System. Physical Review Letters, 2002, 88, 255504.	7.8	62

#	Article	IF	CITATIONS
163	Dynamics and Thermodynamics of a system with multiple length scales. Materials Research Society Symposia Proceedings, 2002, 731, 441.	0.1	0
164	Evidence Concerning Drying Behavior of Ne near a Cs Surface. Physical Review Letters, 2001, 87, 206103.	7.8	27
165	Lossless tapers, Gaussian beams, free-space modes: Standing waves versus through-flowing waves. Optical and Quantum Electronics, 2000, 32, 1161-1173.	3.3	1
166	Uptake of gases in bundles of carbon nanotubes. Physical Review B, 2000, 62, 2173-2180.	3.2	243
167	Computer simulations of the wetting properties of neon on heterogeneous surfaces. Physical Review E, 1999, 59, 4402-4407.	2.1	30
168	Atoms in nanotubes: Small dimensions and variable dimensionality. American Journal of Physics, 1999, 67, 1170-1176.	0.7	42
169	<title>Lossless tapers, Gaussian beams, and free-space modes: standing waves versus through-flowing
waves</title> . , 1999, 3666, 199.		0