
Albert Adell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Signaling Mechanisms for the Antidepressant Effects of NLX-101, a Selective Cortical 5-HT1A Receptor Biased Agonist. Pharmaceuticals, 2022, 15, 337.	1.7	3
2	Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways. Biochemical Pharmacology, 2021, 185, 114433.	2.0	31
3	Structural connectivity and subcellular changes after antidepressant doses of ketamine and Ro 25-6981 in the rat: an MRI and immuno-labeling study. Brain Structure and Function, 2021, 226, 2603-2616.	1.2	3
4	mTOR Knockdown in the Infralimbic Cortex Evokes A Depressive-like State in Mouse. International Journal of Molecular Sciences, 2021, 22, 8671.	1.8	18
5	Effects of Acute Stress on the Oscillatory Activity of the Hippocampus–Amygdala–Prefrontal Cortex Network. Neuroscience, 2021, 476, 72-89.	1.1	8
6	AMPA Receptor Potentiators as Potential Rapid-Acting Antidepressants. Contemporary Clinical Neuroscience, 2021, , 85-109.	0.3	0
7	β-Catenin Role in the Vulnerability/Resilience to Stress-Related Disorders Is Associated to Changes in the Serotonergic System. Molecular Neurobiology, 2020, 57, 1704-1715.	1.9	4
8	Antidepressant-Like Effects of CX717, a Positive Allosteric Modulator of AMPA Receptors. Molecular Neurobiology, 2020, 57, 3498-3507.	1.9	21
9	Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules, 2020, 10, 947.	1.8	114
10	Role of Serotonin and Noradrenaline in the Rapid Antidepressant Action of Ketamine. ACS Chemical Neuroscience, 2019, 10, 3318-3326.	1.7	43
11	Neural oscillations in the infralimbic cortex after electrical stimulation of the amygdala. Relevance to acute stress processing. Journal of Comparative Neurology, 2018, 526, 1403-1416.	0.9	6
12	Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist. Translational Psychiatry, 2018, 8, 84.	2.4	17
13	Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex. Physiological Reports, 2016, 4, e12854.	0.7	16
14	Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology, 2016, 108, 91-102.	2.0	46
15	Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology, 2016, 103, 16-26.	2.0	198
16	Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2778-2789.	1.6	60
17	Revisiting the role of raphe and serotonin in neuropsychiatric disorders. Journal of General Physiology, 2015, 145, 257-259.	0.9	18
18	Blockade of MK-801-Induced Heat Shock Protein 72/73 in Rat Brain by Antipsychotic and Monoaminergic Agents Targeting D2, 5-HT _{1A} , 5-HT _{2A} and α ₁ -Adrenergic Receptors. CNS and Neurological Disorders - Drug Targets, 2014, 13, 104-111.	0.8	2

ALBERT ADELL

#	Article	IF	CITATIONS
19	The Role of GluN2A and GluN2B Subunits on the Effects of NMDA Receptor Antagonists in Modeling Schizophrenia and Treating Refractory Depression. Neuropsychopharmacology, 2014, 39, 2673-2680.	2.8	64
20	Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action. Neuropharmacology, 2014, 79, 49-58.	2.0	42
21	Microdialysis. , 2013, , 1-8.		0
22	Is the Acute NMDA Receptor Hypofunction a Valid Model of Schizophrenia?. Schizophrenia Bulletin, 2012, 38, 9-14.	2.3	119
23	Importance of inter-hemispheric prefrontal connection in the effects of non-competitive NMDA receptor antagonists. International Journal of Neuropsychopharmacology, 2012, 15, 945-956.	1.0	29
24	Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology, 2011, 217, 231-238.	1.5	30
25	Unraveling Monoamine Receptors Involved in the Action of Typical and Atypical Antipsychotics on Glutamatergic and Serotonergic Transmission in Prefrontal Cortex. Current Pharmaceutical Design, 2010, 16, 502-515.	0.9	66
26	Editorial [Hot topic: New Strategies in the Search of Antipsychotic Drugs (Executive Editor: Albert) Tj ETQq0 0 0	rgBT/Over	rlock 10 Tf 50
27	In Vitro and In Vivo Activation of Astrocytes by Amyloid-β is Potentiated by Pro-Oxidant Agents. Journal of Alzheimer's Disease, 2010, 20, 229-245.	1.2	42
28	Serotonin Interaction with Other Transmitter Systems. Handbook of Behavioral Neuroscience, 2010, , 259-276.	0.7	6
29	Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. International Journal of Neuropsychopharmacology, 2009, 12, 487.	1.0	47
30	The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. Journal of Neurochemistry, 2008, 79, 172-182.	2.1	107
31	Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiology of Aging, 2008, 29, 1366-1379.	1.5	94
32	Clozapine and Haloperidol Differently Suppress the MK-801-Increased Glutamatergic and Serotonergic Transmission in the Medial Prefrontal Cortex of the Rat. Neuropsychopharmacology, 2007, 32, 2087-2097.	2.8	167
33	Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. Journal of Neurochemistry, 2007, 102, 550-561.	2.1	25
34	Chapter 6.3 The use of brain microdialysis in antidepressant drug research. Handbook of Behavioral Neuroscience, 2006, , 527-543.	0.7	1
35	Pindolol Augmentation of Antidepressant Response. Current Drug Targets, 2006, 7, 139-147.	1.0	100
36	Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. International Journal of Neuropsychopharmacology, 2006, 9, 565.	1.0	88

ALBERT ADELL

#	Article	IF	CITATIONS
37	Modulation of the Neuronal Activity and Neurotransmitter Release by 5-HT1A and 5-HT1B/1D Receptors. , 2006, , 365-401.		1
38	Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington's disease. Journal of Neurochemistry, 2005, 93, 1057-1068.	2.1	67
39	Effects of acute olanzapine after sustained fluoxetine on extracellular monoamine levels in the rat medial prefrontal cortex. European Journal of Pharmacology, 2005, 516, 235-238.	1.7	26
40	Strategies for producing faster acting antidepressants. Drug Discovery Today, 2005, 10, 578-585.	3.2	122
41	In vivo efflux of serotonin in the dorsal raphe nucleus of 5â€HT _{1A} receptor knockout mice. Journal of Neurochemistry, 2004, 88, 1373-1379.	2.1	74
42	Co-expression and In Vivo Interaction of Serotonin1A and Serotonin2A Receptors in Pyramidal Neurons of Prefrontal Cortex. Cerebral Cortex, 2004, 14, 281-299.	1.6	316
43	The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neuroscience and Biobehavioral Reviews, 2004, 28, 415-431.	2.9	151
44	Stimulation of α1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: reversal by antipsychotic drugs. Journal of Neurochemistry, 2004, 87, 831-842.	2.1	53
45	Antidepressant Properties of Substance P Antagonists: Relationship to Monoaminergic Mechanisms?. CNS and Neurological Disorders, 2004, 3, 113-121.	4.3	42
46	The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 2004, 29, 252-65.	1.4	292
47	In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT2A receptors: effect of antipsychotic drugs. European Journal of Neuroscience, 2003, 18, 1235-1246.	1.2	57
48	Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Research Reviews, 2002, 39, 154-180.	9.1	229
49	Certain Forms of Matrix Metalloproteinase-9 Accumulate in the Extracellular Space after Microdialysis Probe Implantation and Middle Cerebral Artery Occlusion/Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 918-925.	2.4	24
50	How does pindolol improve antidepressant action?. Trends in Pharmacological Sciences, 2001, 22, 224-228.	4.0	175
51	Sympathomimetic effects of pindolol in depression. Trends in Pharmacological Sciences, 2001, 22, 554-555.	4.0	0
52	GABAB-RI receptors in serotonergic neurons. NeuroReport, 2000, 11, 941-945.	0.6	34
53	Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. British Journal of Pharmacology, 2000, 130, 160-166.	2.7	91
54	Regulation of the release of 5-hydroxytryptamine in the median raphe nucleus of the rat by catecholaminergic afferents. European Journal of Neuroscience, 1999, 11, 2305-2311.	1.2	54

ALBERT ADELL

#	Article	IF	CITATIONS
55	A microdialysis study of thein vivorelease of 5-HT in the median raphe nucleus of the rat. British Journal of Pharmacology, 1998, 125, 1361-1367.	2.7	65
56	Simultaneous comparison of cerebral dialysis and push–pull perfusion in the brain of rats: a critical review. Neuroscience and Biobehavioral Reviews, 1998, 22, 371-387.	2.9	54
57	Comparative Study in the Rat of the Actions of Different Types of Stress on the Release of 5-HT in Raphe Nuclei and Forebrain Areas. Neuropharmacology, 1997, 36, 735-741.	2.0	199
58	Lesioning of midbrain raphe nuclei with 5,7-DHT fails to alter ethanol intake in the low alcohol drinking (LAD) rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1996, 20, 473-481.	2.5	4
59	Action of harman (1-methyl-β-carboline) on the brain: Body temperature and in vivo efflux of 5-HT from hippocampus of the rat. Neuropharmacology, 1996, 35, 1101-1107.	2.0	64
60	Synthesis of Dopamine and 5â€HT in Anatomical Regions of the Rat's Brain is Unaffected by Sustained Infusion of Amperozide. Basic and Clinical Pharmacology and Toxicology, 1995, 77, 341-345.	0.0	1
61	5-HT, dopamine, norepinephrine, and related metabolites in brain of low alcohol drinking (LAD) rats shift after chronic intra-hippocampal infusion of harman. Neurochemical Research, 1995, 20, 209-215.	1.6	18
62	Selective destruction of midbrain raphe nuclei by 5,7-DHT: is brain 5-HT involved in alcohol drinking in Sprague-Dawley rats?. Brain Research, 1995, 693, 70-79.	1.1	33
63	Neurotransmitter and neuromodulatory mechanisms involved in alcohol abuse and alcoholism: Epitome of cerebral complexity. Neurochemistry International, 1995, 26, 337-342.	1.9	32
64	Increased alcohol intake in low alcohol drinking rats after chronic infusion of the β-carboline harman into the hippocampus. Pharmacology Biochemistry and Behavior, 1994, 49, 949-953.	1.3	45
65	In Vivo Brain Dialysis Study of the Somatodendritic Release of Serotonin in the Raphe Nuclei of the Rat: Effects of 8-Hydroxy-2-(Di-n-Propylamino)tetralin. Journal of Neurochemistry, 1993, 60, 1673-1681.	2.1	131
66	The Raphe nuclei as a preferential target for antidepressant drugs acting on the 5-HT system: in vivo microdialysis studies in freely-moving rats. European Neuropsychopharmacology, 1992, 2, 276-277.	0.3	0
67	Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 343, 237-44.	1.4	199
68	Regional Distribution of Extracellular 5-Hydroxytryptamine and 5-Hydroxyindoleacetic Acid in the Brain of Freely Moving Rats. Journal of Neurochemistry, 1991, 56, 709-712.	2.1	76
69	Effects of Clomipramine on Extracellular Serotonin in the Rat Frontal Cortex. Advances in Experimental Medicine and Biology, 1991, 294, 451-454.	0.8	4
70	Non-specific inhibition of imipramine binding argues against an endogenous ligand. European Journal of Pharmacology, 1990, 181, 9-15.	1.7	3
71	Chronic administration of clomipramine prevents the increase in serotonin and noradrenaline induced by chronic stress. Psychopharmacology, 1989, 99, 22-26.	1.5	26
72	Chronic Stress Increases Serotonin and Noradrenaline in Rat Brain and Sensitizes Their Responses to a Further Acute Stress. Journal of Neurochemistry, 1988, 50, 1678-1681.	2.1	206

Albert Adell

#	Article	IF	CITATIONS
73	Time course of changes in serotonin and noradrenaline in rat brain after predictable or unpredictable shock. Brain Research, 1988, 459, 54-59.	1.1	70
74	Quantitation of total MHPG in the rat brain using a non enzymatic hydrolysis procedure. Effects of drugs. Life Sciences, 1986, 39, 1571-1578.	2.0	31
75	In Vivo Brain Microdialysis: Principles and Applications. , 0, , 1-34.		4
76	Experimental Research. , 0, , 449-489.		0