
Phung Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453858/publications.pdf Version: 2024-02-01

DHUNCLE

#	Article	IF	CITATIONS
1	Scaling-up heterotrophic cultures of C. Pyrenoidosa microalgae for sustainable synthesis of low-density biodiesel mixtures and predict CI engine behavior at optimal proportions. Environment, Development and Sustainability, 2023, 25, 400-422.	5.0	2
2	Sustainable bioethanol and value-added chemicals production from paddy residues at pilot scale. Clean Technologies and Environmental Policy, 2022, 24, 185-197.	4.1	7
3	Recent Progresses in Eco-Friendly Fabrication and Applications of Sustainable Aerogels from Various Waste Materials. Waste and Biomass Valorization, 2022, 13, 1825-1847.	3.4	17
4	Composite aerogels of TEMPO-oxidized pineapple leaf pulp and chitosan for dyes removal. Separation and Purification Technology, 2022, 283, 120200.	7.9	27
5	Development of a paddy-based biorefinery approach toward improvement of biomass utilization for more bioproducts. Chemosphere, 2022, 289, 133249.	8.2	6
6	A novel application of cellulose aerogel composites from pineapple leaf fibers and cotton waste: Removal of dyes and oil in wastewater. Journal of Porous Materials, 2022, 29, 1137-1147.	2.6	8
7	Green fabrication of bio-based aerogels from coconut fibers for wastewater treatment. Journal of Porous Materials, 2022, 29, 1265-1278.	2.6	5
8	Depolymerization of Rice Straw Lignin into Value-Added Chemicals in Sub-Supercritical Ethanol. Scientific World Journal, The, 2022, 2022, 1-10.	2.1	5
9	Novel recycling of pineapple leaves into cellulose microfibers by two-step grinding of ball milling and high-speed rotor–stator homogenization. Journal of Polymer Research, 2022, 29, .	2.4	2
10	A comparative study on modification of aerogel-based biosorbents from coconut fibers for treatment of dye- and oil-contaminated water. Materials Today Sustainability, 2022, 19, 100175.	4.1	10
11	Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Conversion and Management, 2021, 228, 113655.	9.2	96
12	Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-insulating and Flexible Cellulose Aerogel Composites. Journal of Polymers and the Environment, 2021, 29, 1112-1121.	5.0	39
13	Advanced fabrication and multi-properties of aluminium hydroxide aerogels from aluminium wastes. Journal of Material Cycles and Waste Management, 2021, 23, 885-894.	3.0	5
14	Fabrication and optimization of multifunctional nanoporous aerogels using recycled textile fibers from car tire wastes for oil-spill cleaning, heat-insulating and sound absorbing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127363.	4.7	20
15	Green recycling of fly ash into heat and sound insulation composite aerogels reinforced by recycled polyethylene terephthalate fibers. Journal of Cleaner Production, 2021, 322, 129138.	9.3	17
16	Green fabrication of flexible aerogels from polypropylene fibers for heat insulation and oil/water separation. Journal of Porous Materials, 2021, 28, 617-627.	2.6	18
17	Recent Developments in Water Treatment by Cellulose Aerogels from Agricultural Waste. IOP Conference Series: Earth and Environmental Science, 2021, 947, 012011.	0.3	3
18	Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohydrate Polymers, 2020, 228, 115365.	10.2	153

Phung Le

#	Article	IF	CITATIONS
19	Heat and sound insulation applications of pineapple aerogels from pineapple waste. Materials Chemistry and Physics, 2020, 242, 122267.	4.0	70
20	Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Science of the Total Environment, 2020, 702, 134995.	8.0	58
21	Advanced fabrication and application of pineapple aerogels from agricultural waste. Materials Technology, 2020, 35, 807-814.	3.0	31
22	Functionalized pineapple aerogels for ethylene gas adsorption and nickel (II) ion removal applications. Journal of Environmental Chemical Engineering, 2020, 8, 104524.	6.7	38
23	Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. Journal of Environmental Chemical Engineering, 2020, 8, 104279.	6.7	45
24	The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Scientific Reports, 2020, 10, 21263.	3.3	38
25	Advanced aerogels from waste tire fibers for oil spill-cleaning applications. Journal of Environmental Chemical Engineering, 2020, 8, 104016.	6.7	39
26	Direct (hetero)arylation polymerization for the synthesis of donor–acceptor conjugated polymers based on <i>N</i> â€benzoyldithieno [3,2â€b:2′,3′â€d]pyrrole and diketopyrrolopyrrole toward organic photovoltaic cell application. Polymer International, 2019, 68, 1776-1786.	3.1	5
27	Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling. AIP Conference Proceedings, 2017, , .	0.4	0