
Antonio Salvatore Vita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor. Chemical Engineering Journal, 2022, 434, 134685.	12.7	14
2	Parametric Thermo-Economic Analysis of a Power-to-Gas Energy System with Renewable Input, High Temperature Co-Electrolysis and Methanation. Energies, 2022, 15, 1791.	3.1	2
3	RhNi/CeO2 catalytic activation of alumina open cell foams by dip-spin coating for the CO2 methanation of biogas. Surface and Coatings Technology, 2022, 441, 128563.	4.8	6
4	CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Applied Catalysis B: Environmental, 2020, 264, 118494.	20.2	208
5	Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3. Renewable Energy, 2020, 162, 908-925.	8.9	47
6	Biogas beyond CHP: The HPC (heat, power & chemicals) process. Energy, 2020, 203, 117820.	8.8	27
7	Catalytic Applications of CeO2-Based Materials. Catalysts, 2020, 10, 576.	3.5	25
8	Kinetic study of the methane dry (CO ₂) reforming reaction over the Ce _{0.70} La _{0.20} Ni _{0.10} O _{2â^îî} catalyst. Catalysis Science and Technology, 2020, 10, 2652-2662.	4.1	17
9	Production of hydrogen by methane dry reforming: A study on the effect of cerium and lanthanum on Ni/MgAl2O4 catalyst performance. International Journal of Hydrogen Energy, 2020, 45, 21392-21408.	7.1	44
10	High-temperature CO2 methanation over structured Ni/GDC catalysts: Performance and scale-up for Power-to-Gas application. Fuel Processing Technology, 2020, 202, 106365.	7.2	32
11	Methane Steam Reforming on the Pt/CeO ₂ Catalyst: Effect of Daily Start-Up and Shut-Down on Long-Term Stability of the Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 16395-16406.	3.7	27
12	Production of hydrogen by methane dry reforming over ruthenium-nickel based catalysts deposited on Al2O3, MgAl2O4, and YSZ. International Journal of Hydrogen Energy, 2019, 44, 25706-25716.	7.1	48
13	Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 14671-14682.	7.1	55
14	Thermal integration of a high-temperature co-electrolyzer and experimental methanator for Power-to-Gas energy storage system. Energy Conversion and Management, 2019, 186, 140-155.	9.2	47
15	Steam Reforming, Partial Oxidation, and Autothermal Reforming of Ethanol for Hydrogen Production in Conventional Reactors. , 2019, , 159-191.		10
16	High specific surface area supports for highly active Rh catalysts: Syngas production from methane at high space velocity. International Journal of Hydrogen Energy, 2018, 43, 11755-11765.	7.1	19
17	Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts. International Journal of Hydrogen Energy, 2018, 43, 11731-11744.	7.1	41
18	Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation. Applied Catalysis B: Environmental, 2018, 226, 384-395.	20.2	126

#	Article	IF	CITATIONS
19	Methanol synthesis from biogas: A thermodynamic analysis. Renewable Energy, 2018, 118, 673-684.	8.9	58
20	Rh/CeO2 Thin Catalytic Layer Deposition on Alumina Foams: Catalytic Performance and Controlling Regimes in Biogas Reforming Processes. Catalysts, 2018, 8, 448.	3.5	20
21	Analysis of Ru/La-Al2O3 catalyst loading on alumina monoliths and controlling regimes in methane steam reforming. Chemical Engineering Journal, 2018, 334, 1792-1807.	12.7	42
22	Ceramic monolith- and foam-structured catalysts via in-situ combustion deposition for energetic applications. Annales De Chimie: Science Des Materiaux, 2018, 42, 405-418.	0.4	1
23	Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 166-186.	0.5	41
24	Hydrogen-rich gas production by steam reforming of n-dodecane. Part II: Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst. Applied Catalysis B: Environmental, 2017, 218, 317-326.	20.2	56
25	Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability. Applied Catalysis B: Environmental, 2017, 218, 779-792.	20.2	61
26	Distributed H 2 production from bioalcohols and biomethane in conventional steam reforming units. , 2017, , 279-320.		1
27	Study of a solid oxide fuel cell fed with n-dodecane reformate. Part II: Effect of the reformate composition. International Journal of Hydrogen Energy, 2017, 42, 1751-1757.	7.1	12
28	Biogas: a Possible New Pathway to Methanol?. Computer Aided Chemical Engineering, 2017, 40, 523-528.	0.5	8
29	Pure Hydrogen Production in Membrane Reactor with Mixed Reforming Reaction by Utilizing Waste Gas: A Case Study. Processes, 2016, 4, 33.	2.8	17
30	Hydrogen-rich gas production by steam reforming of n-dodecane. Applied Catalysis B: Environmental, 2016, 199, 350-360.	20.2	77
31	Study of a Solid Oxide Fuel Cell fed with n-dodecane reformate. Part I: Endurance test. International Journal of Hydrogen Energy, 2016, 41, 5741-5747.	7.1	12
32	Ni/CeO2-thin ceramic layer depositions on ceramic monoliths for syngas production by Oxy Steam Reforming of biogas. Fuel Processing Technology, 2016, 149, 40-48.	7.2	27
33	Performance of 1.5ÂNm3/h hydrogen generator by steam reforming of n-dodecane for naval applications. International Journal of Hydrogen Energy, 2016, 41, 19475-19483.	7.1	20
34	Sorbents with high efficiency for CO2 capture based on amines-supported carbon for biogas upgrading. Journal of Environmental Sciences, 2016, 48, 138-150.	6.1	43
35	Preparation of structured catalysts with Ni and Ni–Rh/CeO2 catalytic layers for syngas production by biogas reforming processes. Catalysis Today, 2016, 273, 3-11.	4.4	58
36	Design of a biogas steam reforming reactor: A modelling and experimental approach. International Journal of Hydrogen Energy, 2016, 41, 11577-11583.	7.1	33

#	Article	IF	CITATIONS
37	The oncoming energy vector: Hydrogen produced in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO 2 catalyst. Catalysis Today, 2016, 259, 368-375.	4.4	50
38	Syngas production by methane oxy-steam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths. Applied Catalysis B: Environmental, 2015, 162, 551-563.	20.2	93
39	Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO2 catalysts for biogas oxidative steam reforming. Materials Chemistry and Physics, 2015, 163, 337-347.	4.0	58
40	Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts. International Journal of Hydrogen Energy, 2015, 40, 11823-11830.	7.1	40
41	Biogas-fed solid oxide fuel cell (SOFC) coupled to tri-reformingÂprocess: Modelling and simulation. International Journal of Hydrogen Energy, 2015, 40, 14640-14650.	7.1	27
42	Biogas Reforming for Hydrogen Production: Performance of Ni/La-Ce-O Catalysts. Advances in Science and Technology, 2014, 93, 19-24.	0.2	2
43	Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths. International Journal of Hydrogen Energy, 2014, 39, 18592-18603.	7.1	38
44	Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides. Applied Catalysis B: Environmental, 2014, 148-149, 91-105.	20.2	102
45	Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content. Fuel Processing Technology, 2014, 127, 47-58.	7.2	70
46	Experimental investigation on a methane fuel processor for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2013, 38, 2387-2397.	7.1	23
47	Investigation of a Solid Oxide Fuel Cell Coupled to a Tri-reforming Process. ECS Transactions, 2013, 57, 2923-2928.	0.5	0
48	Performance evaluation of a solid oxide fuel cell coupled to an external biogas tri-reforming process. Fuel Processing Technology, 2013, 115, 238-245.	7.2	36
49	Comparative Study on Steam and Oxidative Steam Reforming of Methane with Noble Metal Catalysts. Industrial & Engineering Chemistry Research, 2013, 52, 15428-15436.	3.7	65
50	Hydrogen production by methane tri-reforming process over Ni–ceria catalysts: Effect of La-doping. Applied Catalysis B: Environmental, 2011, 104, 64-73.	20.2	209
51	Structured reactors as alternative to pellets catalyst for propane oxidative steam reforming. International Journal of Hydrogen Energy, 2010, 35, 9810-9817.	7.1	24
52	Model-based analysis of reactor geometrical configuration on CO preferential oxidation performance. International Journal of Hydrogen Energy, 2009, 34, 4463-4474.	7.1	5
53	Catalytic Performance of Ce1â^'x Ni x O2 Catalysts for Propane Oxidative Steam Reforming. Catalysis Letters, 2008, 122, 121-130.	2.6	48
54	Performance of a 5kWe fuel processor for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2008, 33, 3197-3203.	7.1	24

ANTONIO SALVATORE VITA

#	Article	IF	CITATIONS
55	Stability Tests of a 5 kWeq LPG Hydrogen Generator for PEFC. ECS Transactions, 2008, 12, 487-497.	0.5	2
56	5 kWe LPG Hydrogen Generator for Polymer Electrolyte Fuel Cells: Momentum-Based Modeling of an Autothermal Reformer. Journal of Fuel Cell Science and Technology, 2007, 4, 210-218.	0.8	6
57	Model-based investigation of a CO preferential oxidation reactor for polymer electrolyte fuel cell systems. International Journal of Hydrogen Energy, 2007, 32, 4040-4051.	7.1	16
58	Performance of Pt/CeO2 catalyst for propane oxidative steam reforming. Applied Catalysis A: General, 2006, 306, 68-77.	4.3	83
59	Experimental analysis of a 2kWe LPG-based fuel processor for polymer electrolyte fuel cells. Journal of Power Sources, 2006, 157, 914-920.	7.8	27
60	Mesoporous Ceria Preparation By Templating Agents. Materials Technology, 2005, 20, 18-23.	3.0	1
61	Development of a LPG fuel processor for PEFC systems: Laboratory scale evaluation of autothermal reforming and preferential oxidation subunits. International Journal of Hydrogen Energy, 2005, 30, 963-971.	7.1	50
62	CO clean-up transient device integrated to a preferential oxidation reactor for PEFC electric vehicles. Fuel Processing Technology, 2004, 85, 1445-1452.	7.2	24
63	Experimental evaluation on the CO2 separation process supported by polymeric membranes. Materials Letters, 2004, 58, 1865-1872.	2.6	10
64	Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003, 123, 10-16.	7.8	165
65	A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles. Applied Catalysis A: General, 2003, 243, 135-146.	4.3	100