Ming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453560/publications.pdf Version: 2024-02-01

MINCLU

#	Article	IF	CITATIONS
1	A Direct View on Li-Ion Transport and Li-Metal Plating in Inorganic and Hybrid Solid-State Electrolytes. Accounts of Chemical Research, 2022, 55, 333-344.	7.6	25
2	Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nature Communications, 2022, 13, 2031.	5.8	19
3	In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy, 2022, 100, 107470.	8.2	34
4	Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nature Communications, 2021, 12, 5943.	5.8	36
5	High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nature Communications, 2021, 12, 6536.	5.8	44
6	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	9.5	34
7	Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Materials, 2020, 29, 377-385.	9.5	66
8	Facile Synthesis of Antâ€Nest‣ike Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33
9	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	5.8	226
10	Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries. Joule, 2020, 4, 1311-1323.	11.7	111
11	Controlling the Lithium-Metal Growth To Enable Low-Lithium-Metal-Excess All-Solid-State Lithium-Metal Batteries. , 2020, 2, 665-670.		37
12	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	6.6	206
13	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
14	Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler. ACS Energy Letters, 2019, 4, 2336-2342.	8.8	80
15	Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO ₃ -Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling. Chemistry of Materials, 2019, 31, 4564-4574.	3.2	65
16	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	11.1	390
17	Increase and discretization of the energy barrier for individual LiNi _x Co _y Mn _y O ₂ (<i>x</i> + 2 <i>y</i> =1) particles with the growth of a Li ₂ CO ₃ surface film. Journal of Materials Chemistry A, 2019 7 12723-12731	5.2	43
18	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	5.2	141

Ming Liu

#	Article	IF	CITATIONS
19	Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A, 2018, 6, 2107-2114.	5.2	127
20	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	5.8	110
21	Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System. Energies, 2018, 11, 1985.	1.6	13
22	A Li ₂ Sâ€Based Sacrificial Layer for Stable Operation of Lithiumâ€Sulfur Batteries. Energy Technology, 2018, 6, 2210-2219.	1.8	4
23	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	5.2	190
24	A stabilized high-energy Li-polyiodide semi-liquid battery with a dually-protected Li anode. Journal of Power Sources, 2017, 347, 136-144.	4.0	17
25	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	5.2	157
26	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	5.2	115
27	High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochimica Acta, 2017, 242, 137-145.	2.6	22
28	A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 2526-2534.	4.0	24
29	An aprotic lithium/polyiodide semi-liquid battery with an ionic shield. Journal of Power Sources, 2017, 342, 9-16.	4.0	15
30	An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive. Nano Energy, 2017, 40, 240-247.	8.2	81
31	A self-cleaning Li-S battery enabled by a bifunctional redox mediator. Journal of Power Sources, 2017, 361, 203-210.	4.0	46
32	A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life. Small, 2017, 13, 1602015.	5.2	33
33	Boron phosphide monolayer as a potential anode material for alkali metal-based batteries. Journal of Materials Chemistry A, 2017, 5, 672-679.	5.2	217
34	Two-dimensional SiS as a potential anode material for lithium-based batteries: A first-principles study. Journal of Power Sources, 2016, 331, 391-399.	4.0	46
35	Unraveling the Positive Roles of Point Defects on Carbon Surfaces in Nonaqueous Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2016, 120, 18394-18402.	1.5	50
36	In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries. Electrochimica Acta, 2016, 213, 871-878.	2.6	74

Ming Liu

#	Article	IF	CITATIONS
37	A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte. Nano Energy, 2016, 28, 97-105.	8.2	60
38	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 23105-23113.	4.0	200
39	Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30, 1-8.	8.2	179
40	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	5.2	64
41	Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. Journal of Power Sources, 2016, 336, 115-125.	4.0	87
42	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	10.2	346
43	A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98, 582-591.	5.4	128
44	Monodispersed SnO 2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Materials, 2016, 3, 98-105.	9.5	60
45	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	8.2	382
46	In Situ Synthesis of a Hierarchical Allâ€Solidâ€State Electrolyte Based on Nitrile Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500353.	10.2	300
47	Si Nanoparticles Intercalated into Interlayers of Slightly Exfoliated Graphite filled by Carbon as Anode with High Volumetric Capacity for Lithium-ion Battery. Electrochimica Acta, 2015, 184, 364-370.	2.6	24
48	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	4.0	25
49	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	2.6	11
50	Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239, 269-276.	4.0	223
51	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	1.8	30
52	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	1.6	284