

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453334/publications.pdf Version: 2024-02-01

YIANG LI

#	Article	lF	CITATIONS
1	Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 2018, 172, 1-11.	5.1	998
2	Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliability Engineering and System Safety, 2019, 182, 208-218.	5.1	354
3	Multi-Layer domain adaptation method for rolling bearing fault diagnosis. Signal Processing, 2019, 157, 180-197.	2.1	306
4	Cross-Domain Fault Diagnosis of Rolling Element Bearings Using Deep Generative Neural Networks. IEEE Transactions on Industrial Electronics, 2019, 66, 5525-5534.	5.2	281
5	Deep residual learning-based fault diagnosis method for rotating machinery. ISA Transactions, 2019, 95, 295-305.	3.1	264
6	Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Processing, 2019, 161, 136-154.	2.1	254
7	Machinery fault diagnosis with imbalanced data using deep generative adversarial networks. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107377.	2.5	225
8	Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. Journal of Intelligent Manufacturing, 2020, 31, 433-452.	4.4	221
9	Diagnosing Rotating Machines With Weakly Supervised Data Using Deep Transfer Learning. IEEE Transactions on Industrial Informatics, 2020, 16, 1688-1697.	7.2	200
10	A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning. Neurocomputing, 2018, 310, 77-95.	3.5	198
11	A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning. Mechanical Systems and Signal Processing, 2021, 146, 107043.	4.4	161
12	Universal Domain Adaptation in Fault Diagnostics With Hybrid Weighted Deep Adversarial Learning. IEEE Transactions on Industrial Informatics, 2021, 17, 7957-7967.	7.2	158
13	Federated learning for machinery fault diagnosis with dynamic validation and self-supervision. Knowledge-Based Systems, 2021, 213, 106679.	4.0	156
14	Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places. IEEE Transactions on Industrial Electronics, 2020, 67, 6785-6794.	5.2	136
15	Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning. IEEE Transactions on Industrial Informatics, 2021, 17, 7445-7455.	7.2	127
16	Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism. Reliability Engineering and System Safety, 2022, 221, 108297.	5.1	126
17	Deep Learning-Based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics. IEEE Transactions on Industrial Electronics, 2021, 68, 4351-4361.	5.2	120
18	Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation. Measurement: Journal of the International Measurement Confederation, 2020, 164, 108052.	2.5	110

XIANG LI

#	Article	IF	CITATIONS
19	Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mechanical Systems and Signal Processing, 2020, 143, 106825.	4.4	103
20	Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural Networks, 2020, 129, 313-322.	3.3	101
21	Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliability Engineering and System Safety, 2021, 211, 107556.	5.1	92
22	Data alignments in machinery remaining useful life prediction using deep adversarial neural networks. Knowledge-Based Systems, 2020, 197, 105843.	4.0	91
23	Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy. IEEE/ASME Transactions on Mechatronics, 2022, 27, 430-439.	3.7	91
24	Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation. Neurocomputing, 2020, 383, 235-247.	3.5	84
25	Quality analysis in metal additive manufacturing with deep learning. Journal of Intelligent Manufacturing, 2020, 31, 2003-2017.	4.4	81
26	Domain generalization in rotating machinery fault diagnostics using deep neural networks. Neurocomputing, 2020, 403, 409-420.	3.5	75
27	Machine health condition prediction via online dynamic fuzzy neural networks. Engineering Applications of Artificial Intelligence, 2014, 35, 105-113.	4.3	67
28	Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions. Structural Health Monitoring, 2022, 21, 1329-1344.	4.3	65
29	Deep learning-based adversarial multi-classifier optimization for cross-domain machinery fault diagnostics. Journal of Manufacturing Systems, 2020, 55, 334-347.	7.6	64
30	Intelligent ball screw fault diagnosis using a deep domain adaptation methodology. Mechanism and Machine Theory, 2020, 151, 103932.	2.7	60
31	Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact. Physica A: Statistical Mechanics and Its Applications, 2017, 467, 41-58.	1.2	55
32	Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis. Structural Health Monitoring, 2021, 20, 2182-2198.	4.3	55
33	Signal Multiobjective Optimization for Urban Traffic Network. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3529-3537.	4.7	50
34	An improved local mean decomposition method based on improved composite interpolation envelope and its application in bearing fault feature extraction. ISA Transactions, 2020, 97, 365-383.	3.1	48
35	A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing. ISA Transactions, 2022, 121, 349-364.	3.1	47
36	Deep Learning-Based Domain Adaptation Method for Fault Diagnosis in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 2020, 33, 445-453.	1.4	47

Xiang Li

#	Article	IF	CITATIONS
37	A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing. Measurement: Journal of the International Measurement Confederation, 2020, 165, 107987.	2.5	46
38	A Novel Transfer Learning Approach in Remaining Useful Life Prediction for Incomplete Dataset. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	46
39	Deep Learning-Based Intelligent Process Monitoring of Directed Energy Deposition in Additive Manufacturing with Thermal Images. Procedia Manufacturing, 2020, 48, 643-649.	1.9	44
40	Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 5480-5491.	7.2	39
41	Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis. Measurement Science and Technology, 2022, 33, 055005.	1.4	39
42	Industrial Remaining Useful Life Prediction by Partial Observation Using Deep Learning With Supervised Attention. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2241-2251.	3.7	38
43	Multi-objective optimal predictive control of signals in urban traffic network. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2019, 23, 370-388.	2.6	32
44	A novel multi-scale CNN and attention mechanism method with multi-sensor signal for remaining useful life prediction. Computers and Industrial Engineering, 2022, 169, 108204.	3.4	31
45	A Markov model for short term wind speed prediction by integrating the wind acceleration information. Renewable Energy, 2021, 164, 242-253.	4.3	30
46	A virtual metrology method with prediction uncertainty based on Gaussian process for chemical mechanical planarization. Computers in Industry, 2020, 119, 103228.	5.7	29
47	Intelligent Diagnostics for Ball Screw Fault Through Indirect Sensing Using Deep Domain Adaptation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	27
48	Studies of vehicle lane-changing to avoid pedestrians with cellular automata. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 251-271.	1.2	22
49	Deep learning-based cross-sensor domain adaptation for fault diagnosis of electro-mechanical actuators. International Journal of Dynamics and Control, 2020, 8, 1054-1062.	1.5	21
50	Effects of turning and through lane sharing on traffic performance at intersections. Physica A: Statistical Mechanics and Its Applications, 2016, 444, 622-640.	1.2	20
51	Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification. Knowledge-Based Systems, 2020, 204, 106178.	4.0	20
52	Deep Transfer Learning Method Based on 1D-CNN for Bearing Fault Diagnosis. Shock and Vibration, 2021, 2021, 1-16.	0.3	20
53	Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections. Physica A: Statistical Mechanics and Its Applications, 2016, 460, 335-347.	1.2	19
54	Turning-lane and signal optimization at intersections with multiple objectives. Engineering Optimization, 2019, 51, 484-502.	1.5	19

XIANG LI

#	Article	IF	CITATIONS
55	Multiple-objective design optimization of squirrel cage for squeeze film damper by using cell mapping method and experimental validation. Mechanism and Machine Theory, 2019, 132, 66-79.	2.7	19
56	Evaluating Feature Selection and Anomaly Detection Methods of Hard Drive Failure Prediction. IEEE Transactions on Reliability, 2021, 70, 749-760.	3.5	19
57	Intersection multi-objective optimization on signal setting and lane assignment. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1233-1246.	1.2	18
58	Adaptive Fingerprinting. , 2021, , .		17
59	Mining Product Reviews for Needs-Based Product Configurator Design: A Transfer Learning-Based Approach. IEEE Transactions on Industrial Informatics, 2021, 17, 6192-6199.	7.2	16
60	Fault Diagnosis of Ball Screw in Industrial Robots Using Non-Stationary Motor Current Signals. Procedia Manufacturing, 2020, 48, 1102-1108.	1.9	15
61	Fault Diagnosis Based on Non-Negative Sparse Constrained Deep Neural Networks and Dempster–Shafer Theory. IEEE Access, 2020, 8, 18182-18195.	2.6	14
62	Methodology for Important Sensor Screening for Fault Detection and Classification in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 2021, 34, 65-73.	1.4	14
63	Control experiments on time-delayed dynamical systems. JVC/Journal of Vibration and Control, 2014, 20, 827-837.	1.5	13
64	Cross-domain gearbox diagnostics under variable working conditions with deep convolutional transfer learning. JVC/Journal of Vibration and Control, 2021, 27, 854-864.	1.5	13
65	Fault prognosis of industrial robots in dynamic working regimes: Find degradation in variations. Measurement: Journal of the International Measurement Confederation, 2021, 173, 108545.	2.5	13
66	Effect of interactions between vehicles and pedestrians on fuel consumption and emissions. Physica A: Statistical Mechanics and Its Applications, 2014, 416, 661-675.	1.2	12
67	Deep Learning-Based Cross-Machine Health Identification Method for Vacuum Pumps with Domain Adaptation. Procedia Manufacturing, 2020, 48, 1088-1093.	1.9	12
68	Enhancing Intelligent Cross-Domain Fault Diagnosis Performance on Rotating Machines with Noisy Health Labels. Procedia Manufacturing, 2020, 48, 940-946.	1.9	11
69	Adaptive virtual metrology method based on Just-in-time reference and particle filter for semiconductor manufacturing. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108338.	2.5	11
70	Multi-objective system optimization method and experimental validation of a centralized squeeze film damper using a cell mapping method considering dynamic constraints. Engineering Optimization, 2021, 53, 941-961.	1.5	10
71	Intelligent Robust Cross-Domain Fault Diagnostic Method for Rotating Machines Using Noisy Condition Labels. Mathematics, 2022, 10, 455.	1.1	10
72	Deep Learning-Based Intelligent Defect Detection of Cutting Wheels with Industrial Images in Manufacturing. Procedia Manufacturing, 2020, 48, 902-907.	1.9	8

XIANG LI

#	Article	IF	CITATIONS
73	A Machine Vision Based Monitoring System for the LCD Panel Cutting Wheel Degradation. Procedia Manufacturing, 2020, 48, 49-53.	1.9	5
74	Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments. , 2019, , .		4
75	Recent advances in data-driven dynamics and control. International Journal of Dynamics and Control, 2020, 8, 1200-1221.	1.5	4
76	Intelligent fault diagnosis methodology under varying operating conditions using multi-layer domain adversarial learning strategy. International Journal of Dynamics and Control, 2021, 9, 1370-1380.	1.5	4
77	Reference-based Virtual Metrology method with uncertainty evaluation for Material Removal Rate prediction based on Gaussian Process Regression. International Journal of Advanced Manufacturing Technology, 2021, 116, 1199-1211.	1.5	4
78	Switching control and time-delay identification. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 4161-4169.	1.7	3
79	Deep Multi-Scale Residual Connected Neural Network Model for Intelligent Athlete Balance Control Ability Evaluation. Computational Intelligence and Neuroscience, 2022, 2022, 1-11.	1.1	3
80	Defensive Driving Strategy and Control for Autonomous Ground Vehicle in Mixed Traffic. Studies in Computational Intelligence, 2018, , 3-44.	0.7	1
81	Multi-objective Optimization Design of Rotor-squeeze Film Damper System Based on Cell Mapping Method. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2019, 55, 68.	0.7	1
82	Defensive Driving Strategy for Autonomous Ground Vehicle in Mixed Traffic. Discontinuity, Nonlinearity, and Complexity, 2017, 6, 87-103.	0.1	0
83	Structural similitude for a scaled rotor system considering stiffness characteristics of bolted joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical	1.1	Ο